High temperature proton conducting perovskite oxides are very attractive materials for applications in electrochemical devices, such as solid oxide fuel cells (SOFCs) and hydrogen permeation membranes. A better understanding of the hydrogen oxidation mechanism over the metal/proton conductor interface, is critical for rational design to further enhance the performances of the applications. However, kinetic studies focused on the metal/proton system are limited, compared with the intensively studied metal/oxygen ion conductor system, e.g., Ni/YSZ (yttrium stabilized zirconia, Zr₁-ₓYₓO₂-δ). This work presents an elementary kinetic model developed to assess reaction pathway of hydrogen oxidation/reduction on metal/proton conductor interface. Individual rate expressions and overall hydrogen partial pressure dependencies of current density and polarization resistance were derived in different rate limiting cases. The model is testified by tailored experiments on Pt/BaZr₀.₁Ce₀.₇Y₀.₁Yb₀.₁O₃-δ (BZCYYb) interface using pattern electrodes. Comparison of electrochemical testing and the theoretical predictions indicates the dissociation of hydrogen is the rate-limiting step (RLS), instead of charge transfer, displaying behavior different from metal/oxygen ion conductor interfaces. The kinetic model presented in this thesis is validated by high quantitative agreement with experiments under various conditions. The discovery not only contributes to the fundamental understanding of the hydrogen oxidation kinetics over metal/proton conductors, but provides insights for rational design of hydrogen oxidation catalysts in a variety of electrochemical systems.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/48941 |
Date | 16 September 2013 |
Creators | Feng, Shi |
Contributors | Liu, Meilin |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0019 seconds