¡@¡@This paper mainly focuses on the discussion about how to grow a large-sized highly-doped laser crystal- Neodymium yttrium aluminum garnet( {NdxY1-x}3Al5O3; Nd:YAG). The higher concentration of Nd:YAG crystal can allow the better efficiency of the laser. Since the ion size doped with Nd3+ ( R= 1.12A ) is larger than the ion size of Y3+ (R= 1.01A ), in the lattice of YAG, it¡¦s not easy to mix the smaller Y3+ site with the larger diameter of the Nd3 + ion. Therefore, the higher concentration of the laser crystal we want to grow, the more difficult work it is.
¡@¡@This experiment works under the use of the Czochralski technique to grow the laser crystal: Nd:YAG, and explore the impacts of different crystal pulling growth conditions on the growth of Nd:YAG crystal. Through adjusting the parameters of crystal growth, the crystal growth environments and the thermal fields, I discuss how to solve the problems of the scattering, cracking and spiral growing during the crystal growth process in order to improve the quality of the crystals.
¡@¡@Finally, comparing the results of a variety of spectral analysis (X-ray diffraction, UV / Vis Spectroscopy, Raman Spectroscopy, PL Spectroscopy) on the slice samples of Nd:YAG crystal which grew by our laboratory with the literature results, we can find that the X-ray diffraction pattern, the absorption spectroscopy, the Raman spectroscopy and the Photoluminescence spectroscopy of the Nd:YAG crystals grew in this experiment are consistent with the literature.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0807112-062150 |
Date | 07 August 2012 |
Creators | Chen, Yingwei |
Contributors | Da-ren Hang, Mitch Chou, Chao-kuei Lee, Shr-li Yang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0807112-062150 |
Rights | user_define, Copyright information available at source archive |
Page generated in 0.0021 seconds