There have been several papers on the subject of traditional peg solitaire on different boards. However, in this paper we consider a generalization of the game to arbitrary boards. These boards are treated as graphs in the combinatorial sense. We present necessary and sufficient conditions for the solvability of several well-known families of graphs. In the major result of this paper, we show that the cartesian product of two solvable graphs is likewise solvable. Several related results are also presented. Finally, several open problems related to this study are given.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-17605 |
Date | 28 October 2011 |
Creators | Beeler, Robert A., Paul Hoilman, D. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0018 seconds