Return to search

The bile-drug-excipient interplay / Das Galle-Arzneistoff-Hilfsstoff Wechselspiel

The bile system in vertebrates is an evolutionary conserved endogenous solubilization system for hydrophobic fats and poorly water-soluble vitamins. Bile pours out from the gallbladder through the common bile duct into the duodenum triggered by cholecystokinin. Cholecystokinin is released from enteroendocrine cells after food intake. The small intestine is also the absorption site of many orally administered drugs. Most emerging drug candidates belong to the class of poorly water-soluble drugs (PWSDs). Like hydrophobic vitamins, these PWSDs might as well be solubilized by bile. Therefore, this natural system is of high interest for drug formulation strategies. Simulated intestinal fluids containing bile salts (e.g., taurocholate TC) and phospholipids (e.g., lecithin L) have been widely applied over the last decade to approximate the behavior of PWSDs in the intestine. Solubilization by bile can enhance the oral absorption of PWSDs being at least in part responsible for the positive “food effect”. The dissolution rate of PWSDs can be also enhanced by the presence of bile. Furthermore, some PWSDs profit from supersaturation stabilization by bile salts. Some excipients solubilizing PWSDs seemed to be promising candidates for drug formulation when investigated in vitro without bile. When tested in vivo, these excipients reduced the bioavailability of drugs. However, these observations have been hardly examined on a molecular level and general links between bile interaction in vitro and bioavailability are still missing.
This thesis investigated the interplay of bile, PWSDs, and excipients on a molecular level, providing formulation scientists a blueprint for rational formulation design taking bile/PWSD/excipient/ interaction into account. The first chapter focus on an in silico 1H nuclear magnetic resonance (NMR) spectroscopy-based algorithm for bile/drug interaction prediction. Chapter II to IV report the impact of excipients on bioavailability of PWSDs interacting with bile. At last, we summarized helpful in vitro methods for drug formulation excipient choice harnessing biopharmaceutic solubilization in chapter V.
Chapter I applies 1H NMR studies with bile and drugs on a large scale for quantitative structure-property relationship analysis. 141 drugs were tested in simulated intestinal media by 1H NMR. Drug aryl-proton signal shifts were correlated to in silico calculated molecular 2D descriptors. The probability of a drug interacting with bile was dependent on its polarizability and lipophilicity, whereas interaction with lipids in simulated intestinal media components was dependent on molecular symmetry, lipophilicity, hydrogen bond acceptor capability, and aromaticity. The probability of a drug to interact with bile was predictive for a positive food effect. This algorithm might help in the future to identify a bile and lipid interacting drug a priori.
Chapter II investigates the impact of excipients on bile and free drug fraction. Three different interaction patterns for excipients were observed. The first pattern defined excipients that interacted with bile and irreversibly bound bile. Therefore, the free drug fraction of bile interacting drugs increased. The second pattern categorized excipients that formed new colloidal entities with bile which had a high affinity to bile interacting drugs. These colloids trapped the drug and decreased the free drug fraction. The last excipient pattern described excipients that formed supramolecular structures in coexistence with bile and had no impact on the free drug fraction. These effects were only observed for drugs interacting with bile (Perphenazine and Imatinib). Metoprolol’s free drug fraction, a compound not interacting with bile, was unaffected by bile or bile/excipient interaction. We hypothesized that bile/excipient interactions may reduce the bioavailability of bile interacting drugs.
Chapter III addresses the hypothesis from chapter II. A pharmacokinetic study in rats revealed that the absorption of Perphenazine was reduced by bile interacting excipients due to bile/excipient interaction. The simultaneous administration of excipient patterns I and II did not further reduce or enhance Perphenazine absorption. Conversely, the absorption of Metoprolol was not impacted by excipients. This reinforced the hypothesis, that drugs interacting with bile should not be formulated with excipients also interacting with bile.
Chapter IV further elaborates which in vitro methods using simulated intestinal fluids are predictive for a drug’s pharmacokinetic profile. The PWSD Naporafenib was analyzed in vitro with simulated intestinal fluids and in presence of excipients regarding solubility, supersaturation, and free drug fraction. Naporafenib showed a strong interaction with TC/L from simulated bile. Assays with TC/L, but not without identified one excipient as possibly bioavailability reducing, one as supersaturation destabilizing, and the last as bile not interacting and supersaturation stabilizing excipient. A pharmacokinetic study in beagle dogs outlined and confirmed the in vitro predictions.
The Appendix summarizes in vivo predictive methods as presented in chapter I to IV and rationalizes experimental design paving the way towards a biopharmaceutic excipient screening. The first presented preliminary decision tree is transformed into a step-by-step instruction. The presented decision matrix might serve as a blueprint for processes in early phase drug formulation development.
In summary, this thesis describes how a drug can be defined as bile interacting or non-interacting and gives a guide as well how to rate the impact of excipients on bile. We showed in two in vivo studies that bile/excipient interaction reduced the bioavailability of bile interacting drugs, while bile non-interacting drugs were not affected. We pointed out that the bile solubilization system must be incorporated during drug formulation design. Simulated gastrointestinal fluids offer a well-established platform studying the fate of drugs and excipients in vivo. Therefore, rational implementation of biopharmaceutic drug and excipient screening steers towards efficacy of oral PWSD formulation design. / Das Gallensystem in Wirbeltieren ist ein evolutionär konserviertes endogenes Solubilisierungssystem für hydrophobe Fette und schwer wasserlösliche Vitamine. Ausgelöst durch Cholecystokinin wird Galle aus der Gallenblase durch den Hauptgallengang in den Zwölffingerdarm ausgeschüttet. Cholecystokinin wird zum Beispiel nach der Nahrungsaufnahme aus enteroendokrinen Zellen freigesetzt. Der Dünndarm ist auch der Ort, an dem viele oral verabreichte Arzneimittel aufgenommen werden. Die meisten neuen Arzneimittelkandidaten gehören zur Klasse der schlecht wasserlöslichen Arzneimittel (poorly water-soluble drugs: PWSDs). Galle kann auch wie bei hydrophoben Vitaminen die Löslichkeit von PWSDs verbessern. Daher ist dieses natürliche System von großem Interesse für Arzneimittelformulierungsstrategien. Simulierte Darmflüssigkeiten, die Gallensalze (z.B. Taurocholat TC) und Phospholipide (Lecithin L) enthalten, wurden in den letzten Jahren häufig verwendet, um das Verhalten von PWSDs im Darm zu simulieren. Die Löslichkeitsverbesserung durch Galle kann die orale Absorption von PWSDs erhöhen, was ein möglicher Grund für den sogenannten positiven "Nahrungsmitteleffekt" darstellt. Auch die Auflösungsgeschwindigkeit von PWSD kann durch die Anwesenheit von Galle verbessert werden. Darüber hinaus profitieren einige PWSDs von der Stabilisierung der Übersättigung durch Gallensalze. Einige Hilfsstoffe, die die Löslichkeit von PWSDs stark erhöhten, schienen vielversprechende Kandidaten für die Arzneimittelformulierung zu sein, wenn sie in vitro ohne Galle untersucht wurden. In vivo getestet, verringerten diese Hilfsstoffe jedoch die Bioverfügbarkeit. Diese Beobachtungen wurden bisher kaum auf molekularer Ebene untersucht, und allgemeine Zusammenhänge zwischen der Interaktion mit der Galle in vitro und der Bioverfügbarkeit fehlen bisher.
In dieser Arbeit wurde das Zusammenspiel von PWSD, Hilfsstoffen und Galle auf molekularer Ebene untersucht, um Formulierungswissenschaftlern einen Entwurf für ein rationales Formulierungsdesign zu liefern, das die Wechselwirkung zwischen PWSD, Hilfsstoffen und Galle berücksichtigt. Das erste Kapitel befasst sich mit einem auf 1H-Kernspinresonanzspektroskopie (1H NMR) basierenden in-silico-Algorithmus zur Vorhersage von Wechselwirkungen zwischen Galle und Arzneimittel. Die Kapitel II bis IV zeigen die Auswirkungen von Hilfsstoffen auf die Bioverfügbarkeit von PWSDs, die mit der Galle interagieren. Schließlich haben wir in Kapitel V hilfreiche in-vitro-Methoden für die Auswahl von Hilfsstoffen in Arzneimittelformulierungen zusammengefasst, die die biopharmazeutische Solubilisierung nutzen.
In Kapitel I werden 1H-NMR-Studien mit Galle und Arzneimitteln in großem Maßstab zur quantitativen Analyse der Struktur-Eigenschafts-Beziehung durchgeführt. 141 Arzneimittel wurden in simulierten Darmmedien mittels 1H-NMR untersucht. Die Aryl-Proton-Signalverschiebungen der Arzneimittel wurden mit in silico berechneten molekularen Deskriptoren korreliert. Die Wahrscheinlichkeit, dass ein Arzneimittel mit Galle interagiert, hing von seiner Polarisierbarkeit und Lipophilie ab, während die Interaktion mit Lipiden in simulierten Darmmedienkomponenten von der molekularen Symmetrie, Lipophilie, der Fähigkeit Wasserstoffbrückenbindungen einzugehen, und der Aromatizität abhing. Die Wahrscheinlichkeit, dass ein Arzneimittel mit Galle interagiert, war prädiktiv für einen positiven Nahrungsmitteleffekt. Dieser Algorithmus könnte in Zukunft dabei helfen, ein mit Galle und Lipiden interagierendes Arzneimittel a priori zu identifizieren.
In Kapitel II wird der Einfluss von Hilfsstoffen auf die Galle und den Anteil des freien Arzneimittels untersucht. Es wurden drei verschiedene Interaktionsmuster für Hilfsstoffe beobachtet. Das erste Muster interagiert mit der Galle und bindet die Galle irreversibel. Dadurch erhöhte sich der Anteil des freien Wirkstoffs. Das zweite Muster von Hilfsstoffen bildete mit der Galle neue kolloidale Strukturen, die eine hohe Affinität zum Arzneimittel hatten. Diese Kolloide schlossen den Wirkstoff ein und verringerten den Anteil des freien Wirkstoffs. Das letzte Hilfsstoffmuster bildete supramolekulare Strukturen in Koexistenz mit der Galle und hatte keinen Einfluss auf den Anteil des freien Arzneistoffes. Diese Auswirkungen wurden nur bei Arzneimitteln beobachtet, die mit der Galle interagieren (Perphenazin und Imatinib). Der Anteil des freien Wirkstoffs Metoprolol, der nicht mit der Galle interagiert, wurde durch die Interaktion von Galle oder Galle/Hilfsstoff nicht beeinflusst. Wir stellten die Hypothese auf, dass Wechselwirkungen zwischen Galle und Hilfsstoffen die Bioverfügbarkeit von Arzneimitteln, die mit der Galle interagieren, verringern können.
Kapitel III befasst sich mit der Hypothese aus Kapitel II. Eine pharmakokinetische Studie an Ratten ergab, dass die Absorption von Perphenazin durch mit der Galle interagierende Hilfsstoffe aufgrund einer Wechselwirkung zwischen Galle und Hilfsstoff verringert wurde. Die gleichzeitige Verabreichung der Hilfsstoffmuster I und II führte nicht zu einer weiteren Verringerung oder Erhöhung der Perphenazin-Resorption. Umgekehrt wurde die Absorption von Metoprolol durch die Hilfsstoffe nicht beeinträchtigt. Dies bestätigt die Hypothese, dass Arzneimittel, die mit Galle interagieren, nicht mit Hilfsstoffen formuliert werden sollten, die ebenfalls mit Galle interagieren.
In Kapitel IV wird näher erläutert, welche in-vitro-Methoden für das pharmakokinetische Profil eines Arzneimittels aussagekräftig sind. Das PWSD Naporafenib wurde in vitro mit simulierten Darmflüssigkeiten und in Gegenwart von Hilfsstoffen hinsichtlich Löslichkeit, Übersättigung und freiem Wirkstoffanteil analysiert. Naporafenib zeigte eine starke Wechselwirkung mit TC/L aus simulierter Galle. Bei Untersuchungen mit TC/L, aber nicht ohne TC/L, wurde ein Hilfsstoff als möglicherweise bioverfügbarkeitsvermindernd, ein Hilfsstoff als die Übersättigung destabilisierend und der letzte als nicht mit der Galle interagierender und die Übersättigung stabilisierender Hilfsstoff identifiziert. In einer pharmakokinetischen Studie an Beagle-Hunden wurden die in-vitro-Vorhersagen bestätigt.
Der Anhang fasst die in den Kapiteln I bis IV vorgestellten in-vivo-Vorhersagemethoden zusammen und rationalisiert die Versuchsplanung, die den Weg für ein biopharmazeutisches Hilfsstoffscreening ebnet. Der vorgestellte vorläufige Entscheidungsbaum wird in eine Schritt-für-Schritt-Anleitung umgewandelt. Die vorgestellte Entscheidungsmatrix soll in den Prozess der frühen Phase der Entwicklung von Arzneimittelformulierungen implementiert werden können.
Zusammenfassend wird in dieser Arbeit beschrieben, wie ein Arzneimittel als Galle interagierend oder nicht interagierend definiert werden kann, und es wird ein Leitfaden für die Bewertung der Auswirkungen von Hilfsstoffen auf Galle gegeben. Wir haben in zwei In-vivo-Studien gezeigt, dass die Interaktion zwischen Galle und Hilfsstoff die Bioverfügbarkeit von Arzneistoffen, die mit der Galle interagieren, verringert, während Arzneistoffe, die nicht mit der Galle interagieren, davon nicht betroffen waren. Wir wiesen darauf hin, dass das Solubilisierungssystem der Galle bei der Entwicklung von Arzneimittelformulierungen berücksichtigt werden muss. Simulierte gastrointestinale Flüssigkeiten bieten eine gut etablierte Plattform zur Untersuchung von Arzneistoffen und Hilfsstoffen in vivo. Die rationelle Umsetzung des biopharmazeutischen Screenings von Arzneimitteln und Hilfsstoffen führt daher zu einem wirksamen Formulierungsdesign von oralen, schwer wasserlöslichen Arzneistoffen.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:29653
Date January 2023
CreatorsSchlauersbach, Jonas
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0041 seconds