Wide literature precedence exists for polymers containing electrostatic interactions and polymers containing hydrogen bonding motifs, however the combination of electrostatic and hydrogen bonding interactions is not widely investigated in current literature. Polyelectrolytes containing hydrogen bonding groups are expected to exhibit properties of both classes of supramolecular interactions. A series of adenine- and thyminecontaining PDMAEMA and tert-butyl acrylate copolymers were synthesized to investigate the effect of incorporating hydrogen bonding groups into a polyelectrolyte. Incorporation of the styrenic nucleobases significantly affected the solubility of these copolymers on aqueous solutions and showed salt-triggerability with higher contents of these groups. Polyelectrolytes are capable of binding and condensing DNA through electrostatic interactions with the negatively charged phosphate groups of the DNA backbone; however a high degree of cytotoxicity is also often observed for these gene delivery systems. The high level of cytotoxicity is attributed to high degree of cationic character for the polyplexes formed with these systems according to the proton-sponge hypothesis. One method of reducing the overall cationic character for these systems is incorporation of non-electrostatic binding mechanisms such as hydrogen bonding. A series of nucleobase-containing PDMAEMA copolymers were utilized in order to investigate the effect of incorporation of these groups on the cell viability, binding efficiency, and transfection efficiency of PDMAEMA. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/33008 |
Date | 16 July 2010 |
Creators | van der Aa, Eveline Maria |
Contributors | Chemistry, Long, Timothy E., Reineke, Theresa M., Moore, Robert E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | vanderAa_EM_T_2010.pdf |
Page generated in 0.0131 seconds