Driven by excess nutrients in water bodies, eutrophication has long been an issue in water resources management. Harmful algal blooms (HABs) in a highly eutrophic water body lead to hypoxia, creating a “dead zone,” which renders the oxygen levels inadequate for the survival of marine life. This study examined the field-scale filtration performance of two specialty absorbents to improve watershed remediation within a Total Maximum Daily Load program. The goal was to simultaneously remove nutrients and biological pollutants along Canal 23 (C-23) in the St. Lucie River Basin, Florida. The filtration system installed in the C-23 river corridor was equipped with either clay– perlite with sand sorption media (CPS) or zero-valent iron and perlite green environmental media (ZIPGEM). Both media were formulated with varying combinations of sand, clay, perlite, and/or recycled iron based on distinct recipes. Seasonality effects were also evident in nutrient removal efficiencies while the decomposition of dissolved organic nitrogen played a pivotal role in nutrient removal, Overall, ZIPGEM demonstrated a more stable nutrient removal efficiency than CPS in the phase of seasonal changes while biological pollutants can be fully removed over seasons.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2023-1315 |
Date | 01 January 2024 |
Creators | Cheng, Jinxiang |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Graduate Thesis and Dissertation 2023-2024 |
Rights | In copyright |
Page generated in 0.0026 seconds