Return to search

Numerical Investigation of Airfoil Self-Noise Generation at Low Reynolds Number

In the advent of increasing the number of operable unmanned aerial systems (UAS) over the next years, a challenge exists in regard to the noise signature that these machines may generate. In this work, we perform advanced computational simulations to study the flow around an airfoil and the associated noise radiating to the near- and farield. The airfoil size and the freestream velocity are representative of a typical UAS. The study is aimed at investigating the characteristics of the aerodynamic noise radiating from an airfoil at various angles of attack, Reynolds number and Mach number. The numerical tool is a high-order compressible Navier-Stokes solver, using Runge-Kutta explicit time integration and dispersion-relation-preserving spatial discretization. Various results in terms of velocity and pressure distribution around the airfoil, and sound pressure level spectra calculated from different probe points located in the near- and farield are compared to each other and discussed.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4324
Date09 December 2016
CreatorsLyas, Tarik
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.002 seconds