Return to search

An investigation of parameter relationships in a high-speed digital multimedia environment

With the rapid adoption of multimedia network technologies, a number of companies and standards bodies are introducing technologies that enhance user experience in networked multimedia environments. These technologies focus on device discovery, connection management, control, and monitoring. This study focused on control and monitoring. Multimedia networks make it possible for devices that are part of the same network to reside in different physical locations. These devices contain parameters that are used to control particular features, such as speaker volume, bass, amplifier gain, and video resolution. It is often necessary for changes in one parameter to affect other parameters, such as a synchronised change between volume and bass parameters, or collective control of multiple parameters. Thus, relationships are required between the parameters. In addition, some devices contain parameters, such as voltage, temperature, and audio level, that require constant monitoring to enable corrective action when thresholds are exceeded. Therefore, a mechanism for monitoring networked devices is required. This thesis proposes relationships that are essential for the proper functioning of a multimedia network and that should, therefore, be incorporated in standard form into a protocol, such that all devices can depend on them. Implementation mechanisms for these relationships were created. Parameter grouping and monitoring capabilities within mixing console implementations and existing control protocols were reviewed. A number of requirements for parameter grouping and monitoring were derived from this review. These requirements include a formal classification of relationship types, the ability to create relationships between parameters with different underlying value units, the ability to create relationships between parameters residing on different devices on a network, and the use of an event-driven mechanism for parameter monitoring. These requirements were the criteria used to govern the implementation mechanisms that were created as part of this study. Parameter grouping and monitoring mechanisms were implemented for the XFN protocol. The mechanisms implemented fulfil the requirements derived from the review of capabilities of mixing consoles and existing control protocols. The formal classification of relationship types was implemented within XFN parameters using lists that keep track of the relationships between each XFN parameter and other XFN parameters that reside on the same device or on other devices on the network. A common value unit, known as the global unit, was defined for use as the value format within value update messages between XFN parameters that have relationships. Mapping tables were used to translate the global unit values to application-specific (universal) units, such as decibels (dB). A mechanism for bulk parameter retrieval within the XFN protocol was augmented to produce an event-driven mechanism for parameter monitoring. These implementation mechanisms were applied to an XFN-protocol-compliant graphical control application to demonstrate their usage within an end user context. At the time of this study, the XFN protocol was undergoing standardisation within the Audio Engineering Society. The AES-64 standard has now been approved. Most of the implementation mechanisms resulting from this study have been incorporated into this standard.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4725
Date January 2014
CreatorsChigwamba, Nyasha
PublisherRhodes University, Faculty of Science, Computer Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Doctoral, PhD
Format305 leaves, pdf
RightsChigwamba, Nyasha

Page generated in 0.0022 seconds