Return to search

Identification of salt stress responsive genes using salt tolerant and salt sensitive soybean germplasms.

Cheng, Chun Chiu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 164-183). / Abstracts in English and Chinese. / Thesis Committee --- p.i / Statement --- p.ii / Abstract --- p.iii / 摘要 --- p.v / Acknowledgements --- p.vi / General Abbreviations --- p.viii / Abbreviations of Chemicals --- p.xi / List of Figures --- p.xv / List of Tables --- p.xvii / Table of Contents --- p.xix / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Salt stress in plants --- p.1 / Chapter 1.2 --- Overview of the molecular basis of salt tolerance in plants --- p.2 / Chapter 1.2.1 --- Stress perception --- p.3 / Chapter 1.2.2 --- Signal transduction --- p.3 / Chapter 1.2.2.1 --- Protein phosphatases --- p.4 / Chapter 1.2.2.2 --- The SOS pathway for ion homeostasis --- p.4 / Chapter 1.2.3 --- DNA and RNA helicases in post-transcriptional control --- p.6 / Chapter 1.2.4 --- ROS scavengers --- p.7 / Chapter 1.2.5 --- Proteases and proteinase inhibitors --- p.8 / Chapter 1.2.6 --- Heat shock proteins (Hsps) --- p.9 / Chapter 1.2.7 --- Highlights on DnaJ/Hsp40 --- p.9 / Chapter 1.3 --- Review on functional genomics of salt stress responses in plants --- p.11 / Chapter 1.3.1 --- Genomics on model organisms --- p.12 / Chapter 1.3.2 --- Transcriptomics for identifying salt stress responsive genes --- p.12 / Chapter 1.3.2.1 --- Multiple stress transcriptome analysis --- p.13 / Chapter 1.3.2.2 --- Genome-wide transcriptome analysis on molecular crosstalk --- p.14 / Chapter 1.3.2.3 --- Tissue specific transcriptome analysis --- p.16 / Chapter 1.3.2.4 --- Comparative transcriptome analysis --- p.17 / Chapter 1.3.2.5 --- Transcriptome analysis of soybean --- p.24 / Chapter 1.3.3 --- Proteomics in plant salt stress studies --- p.26 / Chapter 1.3.4 --- Beyond the transcriptome and proteome --- p.27 / Chapter 1.4 --- Significance of using soybean germplasms for identifying salt stress responsive genes --- p.28 / Chapter 1.5 --- Objectives --- p.29 / Chapter Chapter 2 --- Materials and Methods --- p.30 / Chapter 2.1 --- Materials --- p.30 / Chapter 2.1.1 --- "Plants, bacterial strains,and vectors" --- p.30 / Chapter 2.1.2 --- Enzymes and major chemicals --- p.33 / Chapter 2.1.3 --- Primers --- p.34 / Chapter 2.1.4 --- Commercial kits --- p.34 / Chapter 2.1.5 --- Equipment and facilities --- p.34 / Chapter 2.1.6 --- "Buffer, solution, gel and medium" --- p.34 / Chapter 2.2 --- Methods --- p.35 / Chapter 2.2.1 --- cDNA microarray analysis --- p.35 / Chapter 2.2.1.1 --- Construction of cDNA subtraction libraries --- p.35 / Chapter 2.2.1.2 --- Assembly of cDNA microarray --- p.36 / Chapter 2.2.1.3 --- External control RNA synthesis --- p.39 / Chapter 2.2.1.4 --- Probe labelling and hybridization --- p.40 / Chapter 2.2.1.5 --- Hybridization signal collection --- p.41 / Chapter 2.2.1.6 --- Image analysis --- p.41 / Chapter 2.2.1.7 --- Data analysis --- p.42 / Chapter 2.2.1.8 --- Selection of salt responsive genes using fold difference in expression --- p.45 / Chapter 2.2.1.9 --- DNA sequencing --- p.46 / Chapter 2.2.1.10 --- Real-time PCR analysis --- p.47 / Chapter 2.2.2 --- Growth conditions and treatments of plants --- p.48 / Chapter 2.2.2.1 --- Soybean for microarray hybridization and real-time PCR --- p.48 / Chapter 2.2.2.2 --- Soybean for the study of GmDNJ1 expression under ABA treatment --- p.48 / Chapter 2.2.2.3 --- Wild-type and transgenic Arabidopsis for functional analysis --- p.49 / Chapter 2.2.2.4 --- Wild-type and transgenic rice for functional analysis --- p.49 / Chapter 2.2.3 --- "DNA, RNA, and protein extraction" --- p.50 / Chapter 2.2.3.1 --- Plasmid DNA extraction from E. coli cells --- p.50 / Chapter 2.2.3.2 --- RNA extraction from plant tissues --- p.51 / Chapter 2.2.3.3 --- Soluble protein extraction from plant tissues --- p.51 / Chapter 2.2.4 --- Blot analysis --- p.51 / Chapter 2.2.4.1 --- Northern blot analysis --- p.52 / Chapter 2.2.4.2 --- Western blot analysis --- p.53 / Chapter 2.2.5 --- Subcloning of GmDNJ1 into pGEX-4T-1 --- p.53 / Chapter 2.2.5.1 --- "Restriction digestion, DNA purification and ligation" --- p.53 / Chapter 2.2.5.2 --- Transformation of competent Escherichia coli (DH5a and BL21) --- p.54 / Chapter 2.2.6 --- Luciferase refolding assay --- p.54 / Chapter 2.2.6.1 --- Culture of E. coli strain BL21 (DE3) --- p.54 / Chapter 2.2.6.2 --- Cell lysis --- p.55 / Chapter 2.2.6.3 --- Purification of the GST-GmDNJ1 fusion protein --- p.55 / Chapter 2.2.6.4 --- Quantitation of protein --- p.55 / Chapter 2.2.6.5 --- Luciferase refolding assay --- p.56 / Chapter Chapter 3 --- Results --- p.57 / Chapter 3.1 --- Overview of cDNA microarray analysis --- p.57 / Chapter 3.2 --- Identification of salt responsive genes in subtraction libraries concerning two contrasting soybean germplasms --- p.61 / Chapter 3.3 --- Data processing before selection of salt stress responsive genes --- p.75 / Chapter 3.3.1 --- M-A plots --- p.75 / Chapter 3.3.2 --- Boxplots --- p.76 / Chapter 3.3.3 --- Scatterplots --- p.76 / Chapter 3.4 --- Selection of salt responsive genes using fold difference in expression --- p.77 / Chapter 3.4.1 --- Selection of genes with differential expression between tolerant and sensitive germplasms --- p.77 / Chapter 3.4.2 --- Selection of genes with differential expression between cultivated and wild germplasms --- p.89 / Chapter 3.4.3 --- Data validation by real-time PCR analysis --- p.91 / Chapter 3.5 --- Selection of salt responsive genes using statistical tools --- p.95 / Chapter 3.5.1 --- Quantitative trait analysis for salt responsive genes --- p.95 / Chapter 3.5.2 --- Identification of salt stress correlation genes --- p.100 / Chapter 3.5.3 --- Cluster analyses --- p.104 / Chapter 3.5.3.1 --- Clustering genes --- p.104 / Chapter 3.5.3.2 --- Clustering samples --- p.108 / Chapter 3.5.4 --- Data validation by real-time PCR analysis --- p.111 / Chapter 3.6 --- Summary of cDNA microarray analysis --- p.112 / Chapter 3.7 --- Studies on GmDNJ1 --- p.120 / Chapter 3.7.1 --- Sequence analysis of GmDNJ1 --- p.120 / Chapter 3.7.2 --- GmDNJ1 was induced by salt stress and ABA treatment in soybean (Glycine max) --- p.127 / Chapter 3.7.3 --- Expressing GmDNJ1 in transgenic Arabidopsis (Arabidopsis thaliana) enhances the tolerance to salt stress and dehydration stress --- p.129 / Chapter 3.7.4 --- Expressing GmDNJ1 in transgenic rice (Oryza sativa) enhances the tolerance to salt stress and dehydration stress --- p.135 / Chapter 3.7.5 --- The GmDNJ1 protein can replace DnaJ in the in vitro luciferase refolding assay --- p.141 / Chapter Chapter 4 --- Discussion --- p.145 / Chapter 4.1 --- Overview of expression profiling of the 20 soybean germplasms --- p.145 / Chapter 4.2 --- Identification of salt responsive genes from subtraction libraries --- p.146 / Chapter 4.3 --- Normalization of data from microarray experiments --- p.148 / Chapter 4.4 --- The fold difference analysis --- p.149 / Chapter 4.4.1 --- Response to stress --- p.149 / Chapter 4.4.2 --- Gene expression --- p.150 / Chapter 4.4.3 --- Molecular function --- p.150 / Chapter 4.4.4 --- Metabolic activity --- p.151 / Chapter 4.4.5 --- Cellular component --- p.152 / Chapter 4.4.6 --- Genes with 2.5-fold difference in expression between cultivated and wild germplasms --- p.153 / Chapter 4.5 --- Selection of salt responsive genes using statistical tools --- p.153 / Chapter 4.5.1 --- Quantitative trait analysis --- p.153 / Chapter 4.5.2 --- Cluster analyses --- p.154 / Chapter 4.6 --- Studies on GmDNJ1 --- p.157 / Chapter 4.6.1 --- GmDNJ1 is a good candidate for gene studies --- p.157 / Chapter 4.6.2 --- Sequence analysis of GmDNJ1 suggested it to be a DnaJ/Hsp40 homologue in soybean --- p.158 / Chapter 4.6.3 --- GmDNJ1 was induced by salt stress and ABA treatment --- p.158 / Chapter 4.6.4 --- GmDNJ1 has a higher expression in salt tolerant soybean germplasms over sensitive ones --- p.159 / Chapter 4.6.5 --- Ectopic expression of GmDNJ1 enhanced the tolerance to salt stress and dehydration stress in transgenic Arabidopsis --- p.159 / Chapter 4.6.6 --- Ectopic expression of GmDNJ1 enhanced the tolerance to salt stress and dehydration stress in transgenic rice --- p.160 / Chapter 4.6.7 --- Luciferase activity assay showed that GmDNJ 1 functioned as a DnaJ/Hsp40 in vitro --- p.161 / Chapter Chapter 5 --- Conclusion --- p.162 / References --- p.164 / Appendix I - Enzymes and major chemicals --- p.184 / Appendix II - Primers --- p.188 / Appendix III - Major commercial kits --- p.192 / Appendix IV - Major equipment and facilities --- p.193 / "Appendix V - Formulation of buffer, solution, gel, and medium" --- p.194 / Appendix VI - Plots in microarray experiments --- p.198 / Appendix VII - Clones with differential expression (>2.5-fold or >1.8-fold) between germplasms --- p.208 / Appendix VIII - Salt responsive genes revealed by quantitative trait analysis --- p.216 / Appendix IX - Supplementary data in real-time PCR analysis --- p.221 / Appendix X - Supplementary data in functional analyses --- p.233

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326659
Date January 2009
ContributorsCheng, Chun Chiu., Chinese University of Hong Kong Graduate School. Division of Biology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xxv, 235 leaves : col. ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds