This thesis deals with categorization of short spam texts from SMS messages. First part summarizes current methods for text classification and~it's followed by description of several commonly used classifiers. In following chapters test data analysis, program implementation and results are described. The program is able to predict text categories based on predefined set of classes and also estimate classification accuracy on training data. For the two category types, that I designed, classifier reached accuracy of 82% and 92% . Both preprocessing and feature selection had a positive impact on resulting accuracy. It is possible to improve this accuracy further by removing portion of samples, which are difficult to classify. With 80\% recall it is possible to increase accuracy by 8-10%.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:386005 |
Date | January 2018 |
Creators | Drápela, Karel |
Contributors | Křena, Bohuslav, Šimková, Hana |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds