Return to search

Identifying Ionospheric Scintillation in the South Atlantic Magnetic Anomaly using motion-affected GPS data from a ship-based receiver

his dissertation serves to report on the novel use of a geodetic-grade, dual-frequency Global Positioning System (GPS) Ionospheric Scintillation and Total Electron Content Monitor (GISTM), in an attempt to identify instances of ionospheric scintillation over the South Atlantic Magnetic Anomaly (SAMA) while located aboard the moving polar research vessel SA Agulhas II. The SAMA is a region in the South Atlantic Ocean where the Earth’s magnetic field is weakest in relation to other regions at comparable latitudes, resulting in the precipitation of high-energy particles into the ionosphere during geomagnetic storms. Ionospheric scintillations are rapid fluctuations in the phase and amplitude of trans-ionospheric radio signals resulting from electron density variations along the ray path. As a result, spacebased navigation systems can encounter increased errors in position accuracy or complete loss of lock. These are risk factors for modern aircraft and ocean vessels which rely on access to accurate Position, Navigation and Timing (PNT) services to operate safely. In this research, only the radio signals from GPS satellites are specifically used to measure these fluctuations. Traditional scintillation measurements are done using dedicated dual-frequency GPS receivers at fixed terrestrial locations. Most of the SAMA lies beyond the reach of the land-based sensors. The South African National Space Agency (SANSA) operates several GISTM stations in Southern Africa, at Marion Island, Gough Island, and the SANAE-IV base in Antarctica. The NovAtel GSV4004B GPS Ionospheric Scintillation and Total Electron Content Monitor (GISTM) installed on board the SA Agulhas II in 2012 has enabled for the first time the terrestrial measurement of scintillation from within the SAMA region. In this project, the amplitude scintillation (S4) and phase scintillation (σφ) indices from 50 Hz L1 GPS signals recorded during the 2014 and 2015 voyages of the SA Agulhas II were analysed for the first time. The scintillation effects are characterised in terms of position and motion data, carrierto-noise-density ratio, number of satellites, and satellite lock time. The goal is to develop an understanding of the effect of motion on the quality of data recorded by the receiver. The roll angle thresholds for the SA Agulhas II are calculated and it is shown that multipath errors are unlikely to be experienced. Significant data challenges were identified stemming from the incorrect setup of the SA Agulhas II GISTM. Data from elevations below 10° were missing because of hard-coded limitations within the GISTM on-board software. The data underwent significant reprocessing before being used. Comparisons were done in-harbour and out at sea with data from the nearest stationary GISTM receivers. It was shown that the movement of the receiver induces significant noise in the data. The noise levels are proportional to the velocity of the ship. An attempt to filter out the noise was unsuccessful. The motion-induced noise in the ship data masked the presence of any potential scintillations. With the ability to detect scintillation compromised, it was decided that a comparison with a land-based receiver within the SAMA would be necessary. Only one identical GISTM receiver met these requirements, located on Gough Island, at 40°20’ 58.90" S, 9°52’ 49.35" W. Data was isolated from both the SA Agulhas II GISTM and Gough Island GISTM for a period where the separation between the two receiver locations was less than 100 km. The Symmetric-Horizontal disturbance index (SYM-H) was used to identify geomagnetic storm conditions. GPS visibility maps were used to identify any potential signal obstructions. No correlation could be seen between position error and the number of satellites locked due to the high number of GPS satellites available at all times. It was discovered that the high noise levels had no effect on the position accuracy of the moving receiver, but that rapid changes in the instantaneous velocity coincided with peaks in the position error. No scintillation events were identified using the SA Agulhas II GISTM as a result of masking by the noise, however, the Gough Island GISTM data showed that no scintillation events occurred during the period in question anyway. Wind was identified as a potential contributing factor to the motion noise effect. This study provided justification for the purchase and installation of a newly developed motion-compensated GISTM receiver on board the SA Agulhas II, running off the same antenna and thus the same received signals. These data sets can be used for a direct receiver comparison in future work.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/31337
Date25 February 2020
CreatorsVermeulen, Annelie
ContributorsCilliers, Pierre, Martinez, Peter
PublisherFaculty of Engineering and the Built Environment, Department of Electrical Engineering
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MPhil
Formatapplication/pdf

Page generated in 0.0024 seconds