Multiple antennas help in combating the destructive effects of fading as well as improve the spectral efficiency of a communication system. Receive diversity techniques like maximal ratio receive combining have been popular means of introducing multiple antennas into communication systems. Space-time block codes present a way of introducing transmit diversity into the communication system with similar complexity and performance as maximal ratio receive combining. In this thesis we study the performance of space-time block codes in Rayleigh fading channel. In particular, the quasi-static assumption on the fading channel is removed to study how the space-time block coded system behaves in fast fading. In this context, the complexity versus performance trade-off for a space-time block coded receiver is studied. As a means to improve the performance of space-time block coded systems concatenation by convolutional codes is introduced. The improvement in the diversity order by the introduction of convolutional codes into the space-time block coded system is discussed. A general analytic expression for the error performance of a space-time block coded system is derived. This expression is utilized to obtain general expressions for the error performance of convolutionally concatenated space-time block coded systems utilizing both hard and soft decision decoding. Simulation results are presented and are compared with the analytical results. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/9724 |
Date | 27 February 2004 |
Creators | Ali, Saajed |
Contributors | Electrical and Computer Engineering, Woerner, Brian D., Kachroo, Pushkin, Tranter, William H. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | ETD.pdf |
Page generated in 0.002 seconds