A graph is k-resilient if it is possible to construct local routing tables for each vertex such that we can reach a specified destination vertex from anywhere in the graph. There is a conjecture that k-resilience is equivalent to (k+1)-connectivity. We prove this for 3-edge-connected graphs and 4-edge-connected planar triangulations. In the proof we use independent directed spanning trees. Two spanning trees are independent if they share no common edge with the same direction. For k=3,4 we show that a graph has k independent spanning trees if and only if it is k-edge-connected. We search for the spanning trees constructively through reductions of parts of the graph. Some of these reductions can also be used in a general k- connected case. Powered by TCPDF (www.tcpdf.org)
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:351529 |
Date | January 2015 |
Creators | Novotná, Jitka |
Contributors | Pangrác, Ondřej, Šámal, Robert |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds