Turbomachinery forms the principal prime mover in the energy and aviation industries. Due to its size, improvements to this fleet of machines have the potential of significant impact on global emissions. Due to high gas temperatures in stationary gas turbines and jet engines, areas of flow mixing and cooling are identified to benefit from continued research. Here, sensitive areas are cooled through cold air injection, but with the cost of power to compress the coolant to appropriate pressure. Further, the injection itself reduces output due to mixing losses.A turbine testing facility is center to the study, allowing measurement of cooling impact on a rotating low degree of reaction high pressure axial turbine. General performance, flow details, and cooling performance is quantified by output torque, pneumatic probes, and gas concentration measurement respectively. The methodology of simultaneously investigating the beneficial cooling and the detrimental mixing is aimed at the cavity purge flow, used to purge the wheelspace upstream of the rotor from hot main flow gas.Results show the tradeoff between turbine efficiency and cooling performance, with an efficiency penalty of 1.2 %-points for each percentage point of massflow ratio of purge. The simultaneous cooling effectiveness increase is about 40 %-points, and local impact on flow parameters downstream of the rotor is of the order of 2° altered turning and a Mach number delta of 0.01. It has also been showed that flow bypassing the rotor blading may be beneficial for cooling downstream.The results may be used to design turbines with less cooling. Detrimental effects of the remaining cooling may be minimized with the flow field knowledge. Stage performance is then optimized aerodynamically, mixing losses are reduced, and the cycle output is maximized due to the reduced compression work. The combination may be used to provide a significant benefit to the turbomachinery industry and reduced associated emissions. / Strömningsmaskinen i dess olika variationer bildar den främsta drivmotorn inom kraftproduktion och flygindustrin. En förbättring av denna väldiga maskinpark har potentialen till betydande inverkan på globala utsläpp. Områden som identifierats kunna dra nytta av vidare forskning är ombandningsprocesser och kylning. Dessa områden är inneboende i stationära gasturbiner och jetmotorer på grund av de heta gaser som används. Kylning uppnås genom injektion av kall luft i kritiska områden och försäkrar därmed säker drift. Kylningen kommer dock till en kostnad. På cykelnivå krävs arbete för att komprimera flödet till korrekt tryck. Dessutom medför injektionen i sig förluster som kan härledas till omblandningsprocessen. Syftet med detta arbete är att samtidigt undersöka de fördelaktiga kylegenskaperna som nackdelarna med inblandning för att på så sätt bestämma den uppoffring som måste göras för en viss kylning. Alla förbättringar tros dock inte behöva föregås av en uppoffring. Om påverkan av kylningen på huvudflödet är välförstådd kan designen justeras för att ta hänsyn till denna förändring och minimera inverkan. Denna metodologi riktar sig mot ett särskilt kylflöde, kavitetsrensningsflödet, som har till uppgift att avlägsna het luft från den kavitet som uppkommer uppströms rotorskivan i ett högtrycksturbinsteg. Studien kretsar kring en turbinprovanläggning som möjliggör detaljerade strömningsmätningar i ett roterande turbinsteg under inverkan av kavitetsrensningsflödet. Högtrycksturbinsteget som används för undersökningen är av låg reaktionsgrad. Här kvantifieras generell prestanda genom mätning av vridmomentet på utgående axel. Flödesfältet kvantifieras med pneumatiska sonder, och kylningsprestandan predikteras genom gaskoncentrationsmätningar. Resultaten visar avvägningen och sambandet mellan turbinverkningsgrad och kylning i kavitet samt huvudkanal. Flödet mäts i detalj, och de effekter som kan förväntas uppkomma då ett turbinsteg utsätts för en viss mängd av kylflödet kvantifieras. De kvantitativa resultaten för det undersökta steget visar på en förlust i verkningsgrad på 1.2 procentenheter för varje procentenhet av kavitetsrensningsflödet i termer om massflödesförhållande. Samtidigt ses kyleffektiviteten öka med 40 procentenheter. Den lokala inverkan på flödesfältet nedströms rotorn för det undersökta steget är 2° i flödesvinken och en ändring på 0.01 i Machnummer för varje procentenhet av kylflödet. Dessa ändringar ses i form av ökad omlänkning och reducerad hastighet nära hubben, och vice versa omkring halva spännvidden. Inverkan av aktuell driftpunkt understryks genom arbetet. Det har också visats att ett läckage som kringgår rotorbladen i vissa kan fall ge fördelaktig kylning i områden nedströms. Denna kombinerade kunskap kan användas för design av turbiner med så låg mängd kylning som möjligt samtidigt som säker drift bibehålls. Den negativa inverkan av den återstående kylningen kan minimeras genom kunskapen om hur flödesfältet påverkas. Genom detta optimeras stegverkningsgraden aerodynamiskt, omblandningsförluster minimeras, och cykeleffekten maximeras genom det minskade kompressionsarbetet till följd av de reducerade kylmängderna. Kombinationen kan ge en betydande förbättring för turbinindustrin och minskade utsläpp. / <p>QC 20171129</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-218468 |
Date | January 2017 |
Creators | Dahlqvist, Johan |
Publisher | KTH, Kraft- och värmeteknologi, Stockholm |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-KRV ; Report 17/07 |
Page generated in 0.0023 seconds