Porous ceramic materials are an interesting group of materials due to a wide range of physical properties, low density, and good permeability. Production of a monolith with a shape stability that would also have a high specific surface area and high porosity is a common problem with porous ceramics. The goal of this work was to maintain the high specific surface area and to produce a monolith with a shape stability. Two forms of porous silica nanofibers (as prepared and milled) were used and partially sintered using the Spark Plasma Sintering method (SPS). Different sintering times and temperatures for SPS were tested. The findings revealed that the best SPS conditions were as follows: temperature: 600 °C, sintering time: 5 minutes, pressure: 3 MPa, and the heating rate: 144 °C/min. These sintering conditions resulted in a stable silica based machinable monolith made from fibers or milled fibers. The monoliths have the specific surface area of up to 470 m^2/g and porosity of 72 %, or the specific surface area of up to 422 m^2/g and porosity of 69 % for as prepared fibers and milled fibers, respectively.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:442603 |
Date | January 2021 |
Creators | Barančíková, Miriama |
Contributors | Spusta, Tomáš, Salamon, David |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds