The subject of this thesis is preparation of CoCrFeMnNiNx high entropy mixtures via the methods of mechanical alloying and spark plasma sintering (SPS). Three series of specimens were fabricated in this thesis: samples milled in argon (benchmark materials), samples milled in nitrogen atmosphere (to observe their ability of nitrogen absorption) and samples microalloyed with CrN, FeN nitrides (to observe their dissociation into the solid solution potential). The fabricated powders and SPS compacts were subsequently observed by electron microscopy and their phase content by X-Ray diffraction (XRD) and elemental composition by EDS analysis were carried out. A method of reduction melting in inert atmosphere was used to determine the exact oxygen and nitrogen content in powders, while the respective particle size distribution measured by laser diffraction method. The influence of nitrogen content on the hardness of the samples was studied via the microhardness measured. After completing the process of mechanical alloying under the Nitrogen atmosphere was the maximal concentration of nitrogen in the structure 0,208% after 24 hours of milling (dependency on time was linear), which means, the method of milling under the Nitrogen atmosphere was successful. XRD of milled samples showed the existence of the only FCC single solid solution phase, while samples milled under the Nitrogen atmosphere showed the trend of the growth of the lattice parameter with the increasing nitrogen content. There was observed the presence of the chromium nitrides precipitates on the grain boundaries of the FCC phase in microalloyed samples. All specimen were contaminated by a mixture of metallic oxides and manganeese sulphides, which were present in the default manganeese powder. The greatest value of microhardness showed the duplex sample. The increase in values of microhardness (344 HV 0,3) in comparison with the standard sample (262,9 HV 0,3) was recorded on the samples milled under the nitrogen atmosphere, which conforms the positive influence of the nitrogen content on strength characteristics of this alloy.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:377882 |
Date | January 2018 |
Creators | Gubán, Ivan |
Contributors | Hadraba, Hynek, Čížek, Jan |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds