In many domains, repeated measurements are systematically collected to obtain the characteristics of objects or situations that evolve over time or other logical orderings. Although the classification of such data series shares many similarities with traditional multidimensional classification, inducing accurate machine learning models using traditional algorithms are typically infeasible since the order of the values must be considered. In this thesis, the challenges related to inducing predictive models from data series using a class of algorithms known as random forests are studied for the purpose of efficiently and effectively classifying (i) univariate, (ii) multivariate and (iii) heterogeneous data series either directly in their sequential form or indirectly as transformed to sparse and high-dimensional representations. In the thesis, methods are developed to address the challenges of (a) handling sparse and high-dimensional data, (b) data series classification and (c) early time series classification using random forests. The proposed algorithms are empirically evaluated in large-scale experiments and practically evaluated in the context of detecting adverse drug events. In the first part of the thesis, it is demonstrated that minor modifications to the random forest algorithm and the use of a random projection technique can improve the effectiveness of random forests when faced with discrete data series projected to sparse and high-dimensional representations. In the second part of the thesis, an algorithm for inducing random forests directly from univariate, multivariate and heterogeneous data series using phase-independent patterns is introduced and shown to be highly effective in terms of both computational and predictive performance. Then, leveraging the notion of phase-independent patterns, the random forest is extended to allow for early classification of time series and is shown to perform favorably when compared to alternatives. The conclusions of the thesis not only reaffirm the empirical effectiveness of random forests for traditional multidimensional data but also indicate that the random forest framework can, with success, be extended to sequential data representations.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-142052 |
Date | January 2017 |
Creators | Karlsson, Isak |
Publisher | Stockholms universitet, Institutionen för data- och systemvetenskap, Stockholm : Department of Computer and Systems Sciences, Stockholm University |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Report Series / Department of Computer & Systems Sciences, 1101-8526 ; 17-004 |
Page generated in 0.0025 seconds