This thesis focuses on the analysis of the latest techniques for surface and solid binary voxelization of 3D models. It briefly describes current trends in this problematics and identifies a suitable method with an aim to parallelize the given solution on GPUs. It concretely explains the implementation process of the selected algorithm described in the paper Fast Parallel Surface and Solid Voxelization on GPUs , which produces a sparse voxel octree. The results are very close to those of the original authors. A new solution for extracting a smooth isosurface from this structure based on Marching Cubes is presented as well, providing up to 98 % reduction of the traversed cubes in higher resolutions. The resulting implementation is a framework usable for further voxel scene processing.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:363786 |
Date | January 2017 |
Creators | Brída, Ján |
Contributors | Milet, Tomáš, Španěl, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0775 seconds