L’imagerie échographique en trois dimensions (3D) est une modalité d’imagerie médicale en plein développement. En plus de ses nombreux avantages (faible cout, absence de rayonnement ionisant, portabilité) elle permet de représenter les structures anatomiques dansleur forme réelle qui est toujours 3D. Les sondes à balayage mécaniques, relativement lentes, tendent à être remplacées par des sondes bidimensionnelles ou matricielles qui sont unprolongement dans les deux directions, latérale et azimutale, de la sonde classique 1D. Cetagencement 2D permet un dépointage du faisceau ultrasonore et donc un balayage 3D del’espace. Habituellement, les éléments piézoélectriques d’une sonde 2D sont alignés sur unegrille et régulièrement espacés d’une distance (en anglais le « pitch ») soumise à la loi del’échantillonnage spatial (distance inter-élément inférieure à la demi-longueur d’onde) pour limiter l’impact des lobes de réseau. Cette contrainte physique conduit à une multitude d’éléments de petite taille. L’équivalent en 2D d’une sonde 1D de 128 éléments contient128x128=16 384 éléments. La connexion d’un nombre d’éléments aussi élevé constitue unvéritable défi technique puisque le nombre de canaux dans un échographe actuel n’excède querarement les 256. Les solutions proposées pour contrôler ce type de sonde mettent en oeuvredu multiplexage ou des techniques de réduction du nombre d’éléments, généralement baséessur une sélection aléatoire de ces éléments (« sparse array »). Ces méthodes souffrent dufaible rapport signal à bruit du à la perte d’énergie qui leur est inhérente. Pour limiter cespertes de performances, l’optimisation reste la solution la plus adaptée. La première contribution de cette thèse est une extension du « sparse array » combinéeavec une méthode d’optimisation basée sur l’algorithme de recuit simulé. Cette optimisation permet de réduire le nombre nécessaire d’éléments à connecter en fonction des caractéristiques attendues du faisceau ultrasonore et de limiter la perte d’énergie comparée à la sonde complète de base. La deuxième contribution est une approche complètement nouvelle consistant à adopter un positionnement hors grille des éléments de la sonde matricielle permettant de supprimer les lobes de réseau et de s’affranchir de la condition d’échantillonnage spatial. Cette nouvelles tratégie permet d’utiliser des éléments de taille plus grande conduisant ainsi à un nombre d’éléments nécessaires beaucoup plus faible pour une même surface de sonde. La surface active de la sonde est maximisée, ce qui se traduit par une énergie plus importante et donc unemeilleure sensibilité. Elle permet également de balayer un angle de vue plus important, leslobes de réseau étant très faibles par rapport au lobe principal. Le choix aléatoire de la position des éléments et de leur apodization (ou pondération) reste optimisé par le recuit simulé.Les méthodes proposées sont systématiquement comparées avec la sonde complète dansle cadre de simulations numériques dans des conditions réalistes. Ces simulations démontrent un réel potentiel pour l’imagerie 3D des techniques développées. Une sonde 2D de 8x24=192 éléments a été construite par Vermon (Vermon SA, ToursFrance) pour tester les méthodes de sélection des éléments développées dans un cadreexpérimental. La comparaison entre les simulations et les résultats expérimentaux permettentde valider les méthodes proposées et de prouver leur faisabilité. / 3D Ultrasound imaging is a fast-growing medical imaging modality. In addition to its numerous advantages (low cost, non-ionizing beam, portability) it allows to represent the anatomical structures in their natural form that is always three-dimensional. The relativelyslow mechanical scanning probes tend to be replaced by two-dimensional matrix arrays that are an extension in both lateral and elevation directions of the conventional 1D probe. This2D positioning of the elements allows the ultrasonic beam steering in the whole space. Usually, the piezoelectric elements of a 2D array probe are aligned on a regular grid and spaced out of a distance (the pitch) subject to the space sampling law (inter-element distancemust be shorter than a mid-wavelength) to limit the impact of grating lobes. This physical constraint leads to a multitude of small elements. The equivalent in 2D of a 1D probe of 128elements contains 128x128 = 16,384 elements. Connecting such a high number of elements is a real technical challenge as the number of channels in current ultrasound scanners rarely exceeds 256. The proposed solutions to control this type of probe implement multiplexing or elements number reduction techniques, generally using random selection approaches (« spars earray »). These methods suffer from low signal to noise ratio due to the energy loss linked to the small number of active elements. In order to limit the loss of performance, optimization remains the best solution. The first contribution of this thesis is an extension of the « sparse array » technique combined with an optimization method based on the simulated annealing algorithm. The proposed optimization reduces the required active element number according to the expected characteristics of the ultrasound beam and permits limiting the energy loss compared to the initial dense array probe.The second contribution is a completely new approach adopting a non-grid positioningof the elements to remove the grating lobes and to overstep the spatial sampling constraint. This new strategy allows the use of larger elements leading to a small number of necessaryelements for the same probe surface. The active surface of the array is maximized, whichresults in a greater output energy and thus a higher sensitivity. It also allows a greater scansector as the grating lobes are very small relative to the main lobe. The random choice of the position of the elements and their apodization (or weighting coefficient) is optimized by the simulated annealing.The proposed methods are systematically compared to the dense array by performing simulations under realistic conditions. These simulations show a real potential of the developed techniques for 3D imaging.A 2D probe of 8x24 = 192 elements was manufactured by Vermon (Vermon SA, Tours,France) to test the proposed methods in an experimental setting. The comparison between simulation and experimental results validate the proposed methods and prove their feasibility. / L'ecografia 3D è una modalità di imaging medicale in rapida crescita. Oltre ai vantaggiin termini di prezzo basso, fascio non ionizzante, portabilità, essa permette di rappresentare le strutture anatomiche nella loro forma naturale, che è sempre tridimensionale. Le sonde ascansione meccanica, relativamente lente, tendono ad essere sostituite da quelle bidimensionali che sono una estensione in entrambe le direzioni laterale ed azimutale dellasonda convenzionale 1D. Questo posizionamento 2D degli elementi permette l'orientamentodel fascio ultrasonico in tutto lo spazio. Solitamente, gli elementi piezoelettrici di una sondamatriciale 2D sono allineati su una griglia regolare e separati da una distanza (detta “pitch”) sottoposta alla legge del campionamento spaziale (la distanza inter-elemento deve esseremeno della metà della lunghezza d'onda) per limitare l'impatto dei lobi di rete. Questo vincolo fisico porta ad una moltitudine di piccoli elementi. L'equivalente di una sonda 1D di128 elementi contiene 128x128 = 16.384 elementi in 2D. Il collegamento di un così grandenumero di elementi è una vera sfida tecnica, considerando che il numero di canali negliecografi attuali supera raramente 256. Le soluzioni proposte per controllare questo tipo disonda implementano le tecniche di multiplazione o la riduzione del numero di elementi, utilizzando un metodo di selezione casuale (« sparse array »). Questi metodi soffrono di unbasso rapporto segnale-rumore dovuto alla perdita di energia. Per limitare la perdita di prestazioni, l’ottimizzazione rimane la soluzione migliore. Il primo contributo di questa tesi è un’estensione del metodo dello « sparse array » combinato con un metodo di ottimizzazione basato sull'algoritmo del simulated annealing. Questa ottimizzazione riduce il numero degli elementi attivi richiesto secondo le caratteristiche attese del fascio di ultrasuoni e permette di limitare la perdita di energia.Il secondo contributo è un approccio completamente nuovo, che propone di adottare un posizionamento fuori-griglia degli elementi per rimuovere i lobi secondari e per scavalcare il vincolo del campionamento spaziale. Questa nuova strategia permette l'uso di elementi piùgrandi, riducendo così il numero di elementi necessari per la stessa superficie della sonda. La superficie attiva della sonda è massimizzata, questo si traduce in una maggiore energia equindi una maggiore sensibilità. Questo permette inoltre la scansione di un più grande settore,in quanto i lobi secondari sono molto piccoli rispetto al lobo principale. La scelta casualedella posizione degli elementi e la loro apodizzazione viene ottimizzata dal simulate dannealing. I metodi proposti sono stati sistematicamente confrontati con la sonda completaeseguendo simulazioni in condizioni realistiche. Le simulazioni mostrano un reale potenzialedelle tecniche sviluppate per l'imaging 3D.Una sonda 2D di 8x24 = 192 elementi è stata fabbricata da Vermon (Vermon SA, ToursFrance) per testare i metodi proposti in un ambiente sperimentale. Il confronto tra lesimulazioni e i risultati sperimentali ha permesso di convalidare i metodi proposti edimostrare la loro fattibilità.
Identifer | oai:union.ndltd.org:theses.fr/2013LYO10165 |
Date | 11 October 2013 |
Creators | Diarra, Bakary |
Contributors | Lyon 1, Università degli studi (Florence, Italie), Cachard, Christian, Liebgott, Hervé, Tortoli, Piero |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds