Climate changes in temperature and precipitation are already occurring and are projected to further exhibit increasing temperature and precipitation extremes and increasing variation. Such increased temperature variation and decreased precipitation are likely to have a profound impact on vegetation communities, particularly in regions that are dominated by extreme temperatures and strongly seasonal precipitation events. Both temperature and precipitation are tightly linked to vegetation growth and distribution, and in regions such as the U.S. desert southwest, there are a number of rare and endangered species that have a particularly tight knit relationship with their environment. Here, I examine the relationship between these ecohydrological drivers and a specific, little- researched cactus: the Pima Pineapple Cactus (Coryphantha scheeri var. robustispina). C. scheeri is a small, hemispherical cactus that resides in the Santa Cruz and Altar Valleys of Southern Arizona, and very little is known about the conditions that promote C. scheeri distribution and growth. To provide information that may aide in managing this species, I investigate aspects of the distribution and the phenology of this species. With respect to distribution, I hypothesize that (H1) C. scheeri locations are associated with spatial physical and climatic data within its geographic limits. A framework describing the climatic associations of C. scheeri would enable species managers to take advantage of suitable habitat when opportunities arise. With respect to phenology, within established C. scheeri habitat we lack a clear understanding of the impact ecohydrological factors can have on reproduction and size. Therefore, I also hypothesize (H2) that C. scheeri flowering phenology is triggered by available moisture, which may be in the form of precipitation, humidity, or soil moisture. My results indicate that through the use of the classification tree, C. scheeri habitat is strongly associated with climatic and physical variables at a state-wide scale; these associations indicate large losses of suitable habitat under future projected climate scenarios. Additionally, I find that C. scheeri flowering phenology appears to be associated with precipitation and the resulting increase of soil moisture; the data are also suggestive that bud formation might be associated with water-year growing degree day. Because the results indicate a tight coupling with climatic variables, with most suitable habitat within the current range in Arizona projected to be lost under future climate, I suggest managers may be inclined to increase monitoring C. scheeri in an ecohydrological context relative to the variables identified here and to consider conditions and locations where supplemental watering or microclimate amelioration could be beneficial for the species.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/347323 |
Date | January 2015 |
Creators | Kidder, Amí Lynne |
Contributors | Papuga, Shirley A., Breshears, David D., Papuga, Shirley A., Breshears, David D., McClaran, Mitchel P., Law, Darin J. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0017 seconds