Return to search

Finding, extracting and exploiting structure in text and hypertext / Att finna, extrahera och utnyttja strukturer i text och hypertext

Data mining is a fast-developing field of study, using computations to either predict or describe large amounts of data. The increase in data produced each year goes hand in hand with this, requiring algorithms that are more and more efficient in order to find interesting information within a given time. In this thesis, we study methods for extracting information from semi-structured data, for finding structure within large sets of discrete data, and to efficiently rank web pages in a topic-sensitive way. The information extraction research focuses on support for keeping both documentation and source code up to date at the same time. Our approach to this problem is to embed parts of the documentation within strategic comments of the source code and then extracting them by using a specific tool. The structures that our structure mining algorithms are able to find among crisp data (such as keywords) is in the form of subsumptions, i.e. one keyword is a more general form of the other. We can use these subsumptions to build larger structures in the form of hierarchies or lattices, since subsumptions are transitive. Our tool has been used mainly as input to data mining systems and for visualisation of data-sets. The main part of the research has been on ranking web pages in a such a way that both the link structure between pages and also the content of each page matters. We have created a number of algorithms and compared them to other algorithms in use today. Our focus in these comparisons have been on convergence rate, algorithm stability and how relevant the answer sets from the algorithms are according to real-world users. The research has focused on the development of efficient algorithms for gathering and handling large data-sets of discrete and textual data. A proposed system of tools is described, all operating on a common database containing "fingerprints" and meta-data about items. This data could be searched by various algorithms to increase its usefulness or to find the real data more efficiently. All of the methods described handle data in a crisp manner, i.e. a word or a hyper-link either is or is not a part of a record or web page. This means that we can model their existence in a very efficient way. The methods and algorithms that we describe all make use of this fact. / Informationsutvinning (som ofta kallas data mining även på svenska) är ett forskningsområde som hela tiden utvecklas. Det handlar om att använda datorer för att hitta mönster i stora mängder data, alternativt förutsäga framtida data utifrån redan tillgänglig data. Eftersom det samtidigt produceras mer och mer data varje år ställer detta högre och högre krav på effektiviteten hos de algoritmer som används för att hitta eller använda informationen inom rimlig tid. Denna avhandling handlar om att extrahera information från semi-strukturerad data, att hitta strukturer i stora diskreta datamängder och att på ett effektivt sätt rangordna webbsidor utifrån ett ämnesbaserat perspektiv. Den informationsextraktion som beskrivs handlar om stöd för att hålla både dokumentationen och källkoden uppdaterad samtidigt. Vår lösning på detta problem är att låta delar av dokumentationen (främst algoritmbeskrivningen) ligga som blockkommentarer i källkoden och extrahera dessa automatiskt med ett verktyg. De strukturer som hittas av våra algoritmer för strukturextraktion är i form av underordnanden, exempelvis att ett visst nyckelord är mer generellt än ett annat. Dessa samband kan utnyttjas för att skapa större strukturer i form av hierarkier eller riktade grafer, eftersom underordnandena är transitiva. Det verktyg som vi har tagit fram har främst använts för att skapa indata till ett informationsutvinningssystem samt för att kunna visualisera indatan. Huvuddelen av den forskning som beskrivs i denna avhandling har dock handlat om att kunna rangordna webbsidor utifrån både deras innehåll och länkarna som finns mellan dem. Vi har skapat ett antal algoritmer och visat hur de beter sig i jämförelse med andra algoritmer som används idag. Dessa jämförelser har huvudsakligen handlat om konvergenshastighet, algoritmernas stabilitet givet osäker data och slutligen hur relevant algoritmernas svarsmängder har ansetts vara utifrån användarnas perspektiv. Forskningen har varit inriktad på effektiva algoritmer för att hämta in och hantera stora datamängder med diskreta eller textbaserade data. I avhandlingen presenterar vi även ett förslag till ett system av verktyg som arbetar tillsammans på en databas bestående av “fingeravtryck” och annan meta-data om de saker som indexerats i databasen. Denna data kan sedan användas av diverse algoritmer för att utöka värdet hos det som finns i databasen eller för att effektivt kunna hitta rätt information. / AlgExt, CHiC, ProT

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-22352
Date January 2009
CreatorsÅgren, Ola
PublisherUmeå universitet, Institutionen för datavetenskap, Umeå : Umeå Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationReport / UMINF, 0348-0542 ; 09.12

Page generated in 0.0025 seconds