La tâche de segmentation et de regroupement en locuteurs (speaker diarization) consiste à identifier "qui parle quand" dans un flux audio sans connaissance a priori du nombre de locuteurs ou de leur temps de parole respectifs. Les systèmes de segmentation et de regroupement en locuteurs sont généralement construits en combinant quatre étapes principales. Premièrement, les régions ne contenant pas de parole telles que les silences, la musique et le bruit sont supprimées par la détection d'activité vocale (VAD). Ensuite, les régions de parole sont divisées en segments homogènes en locuteur par détection des changements de locuteurs, puis regroupées en fonction de l'identité du locuteur. Enfin, les frontières des tours de parole et leurs étiquettes sont affinées avec une étape de re-segmentation. Dans cette thèse, nous proposons d'aborder ces quatre étapes avec des approches fondées sur les réseaux de neurones. Nous formulons d’abord le problème de la segmentation initiale (détection de l’activité vocale et des changements entre locuteurs) et de la re-segmentation finale sous la forme d’un ensemble de problèmes d’étiquetage de séquence, puis nous les résolvons avec des réseaux neuronaux récurrents de type Bi-LSTM (Bidirectional Long Short-Term Memory). Au stade du regroupement des régions de parole, nous proposons d’utiliser l'algorithme de propagation d'affinité à partir de plongements neuronaux de ces tours de parole dans l'espace vectoriel des locuteurs. Des expériences sur un jeu de données télévisées montrent que le regroupement par propagation d'affinité est plus approprié que le regroupement hiérarchique agglomératif lorsqu'il est appliqué à des plongements neuronaux de locuteurs. La segmentation basée sur les réseaux récurrents et la propagation d'affinité sont également combinées et optimisées conjointement pour former une chaîne de regroupement en locuteurs. Comparé à un système dont les modules sont optimisés indépendamment, la nouvelle chaîne de traitements apporte une amélioration significative. De plus, nous proposons d’améliorer l'estimation de la matrice de similarité par des réseaux neuronaux récurrents, puis d’appliquer un partitionnement spectral à partir de cette matrice de similarité améliorée. Le système proposé atteint des performances à l'état de l'art sur la base de données de conversation téléphonique CALLHOME. Enfin, nous formulons le regroupement des tours de parole en mode séquentiel sous la forme d'une tâche supervisée d’étiquetage de séquence et abordons ce problème avec des réseaux récurrents empilés. Pour mieux comprendre le comportement du système, une analyse basée sur une architecture de codeur-décodeur est proposée. Sur des exemples synthétiques, nos systèmes apportent une amélioration significative par rapport aux méthodes de regroupement traditionnelles. / Speaker diarization is the task of determining "who speaks when" in an audio stream that usually contains an unknown amount of speech from an unknown number of speakers. Speaker diarization systems are usually built as the combination of four main stages. First, non-speech regions such as silence, music, and noise are removed by Voice Activity Detection (VAD). Next, speech regions are split into speaker-homogeneous segments by Speaker Change Detection (SCD), later grouped according to the identity of the speaker thanks to unsupervised clustering approaches. Finally, speech turn boundaries and labels are (optionally) refined with a re-segmentation stage. In this thesis, we propose to address these four stages with neural network approaches. We first formulate both the initial segmentation (voice activity detection and speaker change detection) and the final re-segmentation as a set of sequence labeling problems and then address them with Bidirectional Long Short-Term Memory (Bi-LSTM) networks. In the speech turn clustering stage, we propose to use affinity propagation on top of neural speaker embeddings. Experiments on a broadcast TV dataset show that affinity propagation clustering is more suitable than hierarchical agglomerative clustering when applied to neural speaker embeddings. The LSTM-based segmentation and affinity propagation clustering are also combined and jointly optimized to form a speaker diarization pipeline. Compared to the pipeline with independently optimized modules, the new pipeline brings a significant improvement. In addition, we propose to improve the similarity matrix by bidirectional LSTM and then apply spectral clustering on top of the improved similarity matrix. The proposed system achieves state-of-the-art performance in the CALLHOME telephone conversation dataset. Finally, we formulate sequential clustering as a supervised sequence labeling task and address it with stacked RNNs. To better understand its behavior, the analysis is based on a proposed encoder-decoder architecture. Our proposed systems bring a significant improvement compared with traditional clustering methods on toy examples.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLS261 |
Date | 26 September 2019 |
Creators | Yin, Ruiqing |
Contributors | Paris Saclay, Barras, Claude |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds