Return to search

Αναγνώριση ομιλητή / Speaker recognition

Η παρούσα διατριβή πραγματεύεται την αναγνώριση ομιλητή σε πραγματικές συνθήκες. Τα κύρια σημεία της εργασίας είναι: (1) αξιολόγηση διαφόρων προσεγγίσεων εξαγωγής χαρακτηριστικών παραμέτρων ομιλίας, (2) μείωση της ισχύος της περιβαλλοντικής επίδρασης στην απόδοση της αναγνώρισης ομιλητή, και (3) μελέτη τεχνικών κατηγοριοποίησης, εναλλακτικών προς τις υπάρχουσες. Συγκεκριμένα, στο (1), προτείνεται μια νέα δομή εξαγωγής παραμέτρων ομιλίας βασισμένη σε πακέτα κυματομορφών, κατάλληλα σχεδιασμένη για αναγνώριση ομιλητή. Εξάγεται με ένα αντικειμενικό τρόπο σε σχέση με την απόδοση αναγνώρισης ομιλητή, σε αντίθεση με την MFCC προσέγγιση, που βασίζεται στην προσέγγιση της αντίληψης της ανθρώπινης ακοής. Έπειτα, στο (2), δίνεται μια δομή για την εξαγωγή παραμέτρων βασισμένη στα MFCC, ανεκτική στο θόρυβο, για την βελτίωση της απόδοσης της αναγνώρισης ομιλητή σε πραγματικό περιβάλλον. Συνοπτικά, μια τεχνική μείωσης του θορύβου βασισμένη σε μοντέλο προσαρμοσμένη στο πρόβλημα της επιβεβαίωσης ομιλητή ενσωματώνεται απευθείας στη δομή υπολογισμού των MFCC. Αυτή η προσέγγιση επέδειξε σημαντικό πλεονέκτημα σε πραγματικό και ταχέως μεταβαλλόμενο περιβάλλον. Τέλος, στο (3), εισάγονται δύο νέοι κατηγοριοποιητές που αναφέρονται ως Locally Recurrent Probabilistic Neural Network (LR PNN), και Generalized Locally Recurrent Probabilistic Neural Network (GLR PNN). Είναι υβρίδια μεταξύ των Recurrent Neural Network (RNN) και Probabilistic Neural Network (PNN) και συνδυάζουν τα πλεονεκτήματα των γεννετικών και διαφορικών προσσεγγίσεων κατηγοριοποίησης. Επιπλέον, τα νέα αυτά νευρωνικά δίκτυα είναι ευαίσθητα σε παροδικές και ειδικές συσχετίσεις μεταξύ διαδοχικών εισόδων, και έτσι, είναι κατάλληλα για να αξιοποιήσουν την συσχέτιση παραμέτρων ομιλίας μεταξύ πλαισίων ομιλίας. Κατά την εξαγωγή των πειραμάτων, διαφάνηκε ότι οι αρχιτεκτονικές LR PNN και GLR PNN παρέχουν καλύτερη απόδοση, σε σχέση με τα αυθεντικά PNN. / This dissertation dials with speaker recognition in real-world conditions. The main accent falls on: (1) evaluation of various speech feature extraction approaches, (2) reduction of the impact of environmental interferences on the speaker recognition performance, and (3) studying alternative to the present state-of-the-art classification techniques. Specifically, within (1), a novel wavelet packet-based speech features extraction scheme fine-tuned for speaker recognition is proposed. It is derived in an objective manner with respect to the speaker recognition performance, in contrast to the state-of-the-art MFCC scheme, which is based on approximation of human auditory perception. Next, within (2), an advanced noise-robust feature extraction scheme based on MFCC is offered for improving the speaker recognition performance in real-world environments. In brief, a model-based noise reduction technique adapted for the specifics of the speaker verification task is incorporated directly into the MFCC computation scheme. This approach demonstrated significant advantage in real-world fast-varying environments. Finally, within (3), two novel classifiers referred to as Locally Recurrent Probabilistic Neural Network (LR PNN), and Generalized Locally Recurrent Probabilistic Neural Network (GLR PNN) are introduced. They are hybrids between Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) and combine the virtues of the generative and discriminative classification approaches. Moreover, these novel neural networks are sensitive to temporal and special correlations among consecutive inputs, and therefore, are capable to exploit the inter-frame correlations among speech features derived for successive speech frames. In the experimentations, it was demonstrated that the LR PNN and GLR PNN architectures provide benefit in terms of performance, when compared to the original PNN.

Identiferoai:union.ndltd.org:upatras.gr/oai:nemertes:10889/308
Date25 June 2007
CreatorsGanchev, Todor
ContributorsΝικόλαος Φακωτάκης, Στουραΐτης, Αθανάσιος, Αναστασόπουλος, Βασίλειος, Παλιουράς, Βασίλειος, Δερματάς, Ευάγγελος, Μουρτζόπουλος, Ιωάννης, Μπερμπερίδης, Κωνσταντίνος
Source SetsUniversity of Patras
Languagegr
Detected LanguageGreek
RelationΗ ΒΥΠ διαθέτει αντίτυπο της διατριβής σε έντυπη μορφή στο βιβλιοστάσιο διδακτορικών διατριβών που βρίσκεται στο ισόγειο του κτιρίου της.

Page generated in 0.0025 seconds