Return to search

Algorithms and Tools for Learning-based Testing of Reactive Systems

In this thesis we investigate the feasibility of learning-based testing (LBT) as a viable testing methodology for reactive systems. In LBT, a large number of test cases are automatically generated from black-box requirements for the system under test (SUT) by combining an incremental learning algorithm with a model checking algorithm. The integration of the SUT with these algorithms in a feedback loop optimizes test generation using the results from previous outcomes. The verdict for each test case is also created automatically in LBT. To realize LBT practically, existing algorithms in the literature both for complete and incremental learning of finite automata were studied. However, limitations in these algorithms led us to design, verify and implement new incremental learning algorithms for DFA and Kripke structures. On the basis of these algorithms we implemented an LBT architecture in a practical tool called LBTest which was evaluated on pedagogical and industrial case studies. The results obtained from both types of case studies show that LBT is an effective methodology which discovers errors in reactive SUTs quickly and can be scaled to test industrial applications. We believe that this technology is easily transferrable to industrial users because of its high degree of automation. / <p>QC 20130312</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-119267
Date January 2013
CreatorsSindhu, Muddassar
PublisherKTH, Teoretisk datalogi, TCS, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-CSC-A, 1653-5723 ; 2013:03

Page generated in 0.0018 seconds