Return to search

A Study Of Natural Convection In Molten Metal Under A Magnetic Field

The interaction between thermal convection and magnetic field is of interest in geophysical and astrophysical problems as well as in metallurgical processes such as casting or crystallization. A magnetic field may act in such a way to damp the convective velocity field in the melt or to reorganize the flow aligned with the magnetic field. This ability to manipulate the flow field is of technological importance in industrial processes. In this work, a direct numerical simulation of three-dimensional Boussinesq convection in a horizontal layer of electrically conducting fluid confined between two perfectly conducting horizontal plates heated from below in a gravitational and magnetic field is performed using a spectral element method. Periodic boundary conditions are assumed in the horizontal directions. The numerical model is then used to study the effects of imposing magnetic field. Finally, a low dimensional representation scheme is presented based on the Karhunen-Loeve approach.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12607754/index.pdf
Date01 September 2006
CreatorsGuray, Ersan
ContributorsTarman, Hakan Isik
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0013 seconds