Return to search

Modelling radio galaxies in the Millennium simulation: SKA/MeerKAT sources and CMB contaminants

Magister Scientiae - MSc / We investigate the modelling of radio galaxies within a semi-analytic framework in the Millennium Simulation of the Virgo Consortium. The aim is to assess the radio sources contamination of Sunyaev-Zeldovich (SZ) signatures of clusters of galaxies in Cosmic Microwave Background (CMB) experiments. The modelling is also relevant to the Karoo Array Telescope (MeerKAT) and the Square Kilometre Array (SKA) science. The semi-analytical model consists of N-body simulation, the Millennium Run to trace the merger history of dark matter haloes within the Λ Cold Dark Matter (ΛCDM) cosmology and a follow up of the black hole accretion history and Active Galactic Nuclei (AGN) evolution. We study the growth of the supermassive black hole (SMBH) in galaxy centres and determine the black hole mass accretion conversion into radiation. We identify a model which matches observed radio luminosity function. We describe a model of observed sample of radio surveys at a given frequency and a flux density limit to obtain a model of radio luminosity function (space density of radio sources as a function of redshift) that we compare with our simulated data. We determine the redshift distribution of radio galaxies (FRI), blazars and radio quasars (FRII) in the simulation. We focus the modelling on flat spectrum population of blazars since their jets are collimated towards us and thus constitute the most potential contaminants of
the CMB. We determine the spatial and density distribution of radio sources in clusters with a virial mass Mvir 2 1014h−1M and then compute the temperature fluctuations and fluxes produced by these cluster radio sources. Our main results include: the model provides a reasonable match within uncertainties with the model obtained by Dunlop & Peacock (1990) [39] using their best fit of radio luminosity function at redshift z . 0:3. The model underestimates the number of radio sources at high redshift z & 1. Radio sources are concentrated around the centre of clusters with a maximum density at r . 0:1r200 where r200 is the radius within which the density is 200 times the critical density. Radio sources are more concentrated in low mass clusters. The model predicts a surface density profile of radio sources with luminosity P 1023 W.Hz−1 at 1.4 GHz (z . 0:06) in agreement with that of Lin & Mohr (2007) [58] at r . 0:1r200 but underestimates the density in the outskirts of the clusters. BL Lacs and FRI radio galaxies produce non negligible contamination at redshift z . 0:1. They produce a mean temperature fluctuation 4:5 K at redshift z 0:01 which can be at the same level as the kinetic SZE signal produced by the cluster. Blazars constitute potential
contaminant of the thermal SZ effect at redshift z 1:0 and z 1:5 at 145 GHz where they produce a mean temperature 300 K - 350 K for an average mass of the cluster. / South Africa

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/2944
Date January 2010
CreatorsRamamonjisoa, Fidy Andriamanankasina
ContributorsCress, Catherine, Dept. of Physics
PublisherUniversity of the Western Cape
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
RightsCopyright: University of the Western Cape

Page generated in 0.0017 seconds