<p>In this work, a gradient of interpenetrating polymer networks, consisting of anionic</p><p>and cationic polymers, has been investigated with respect to protein resistant</p><p>properties and swelling characteristics at different pH and ionic strength</p><p>conditions.</p><p> </p><p>The swelling and protein adsorption have been studied using <em>in situ </em>spectroscopic</p><p>ellipsometry(SE) and imaging surface plasmon resonance(iSPR) respectively.</p><p>It has been shown that, by altering the buffer pH, the region of lowest</p><p>protein adsorption on the surface could be moved laterally. The swelling has</p><p>similarly been shown to respond to both changes in pH and ionic strength. Additionally,</p><p>the arise of surface charge and the polymer swelling in solution, both a</p><p>consequence of the ionisation of fixed charges on the polymer, have been indicated</p><p>to occur at different buffer pH.</p><p> </p><p>The studied polymer systems show promising properties for future applications</p><p>in, for example, the biosensor area, where the surface chemistry can be</p><p>tailor-made to work optimally in a given environment.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-58586 |
Date | January 2010 |
Creators | Sterner, Olof |
Publisher | Linköping University, Department of Physics, Chemistry and Biology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0038 seconds