Return to search

Machine Learning and Statistical Decision Making for Green Radio / Apprentissage statistique et prise de décision pour la radio verte

Cette thèse étudie les techniques de gestion intelligente du spectre et de topologie des réseaux via une approche radio intelligente dans le but d’améliorer leur capacité, leur qualité de service (QoS – Quality of Service) et leur consommation énergétique. Les techniques d’apprentissage par renforcement y sont utilisées dans le but d’améliorer les performances d’un système radio intelligent. Dans ce manuscrit, nous traitons du problème d’accès opportuniste au spectre dans le cas de réseaux intelligents sans infrastructure. Nous nous plaçons dans le cas où aucune information n’est échangée entre les utilisateurs secondaires (pour éviter les surcoûts en transmissions). Ce problème particulier est modélisé par une approche dite de bandits manchots « restless » markoviens multi-utilisateurs (multi-user restless Markov MAB -multi¬armed bandit). La contribution principale de cette thèse propose une stratégie d’apprentissage multi-joueurs qui prend en compte non seulement le critère de disponibilité des canaux (comme déjà étudié dans la littérature et une thèse précédente au laboratoire), mais aussi une métrique de qualité, comme par exemple le niveau d’interférence mesuré (sensing) dans un canal (perturbations issues des canaux adjacents ou de signaux distants). Nous prouvons que notre stratégie, RQoS-UCB distribuée (distributed restless QoS-UCB – Upper Confidence Bound), est quasi optimale car on obtient des performances au moins d’ordre logarithmique sur son regret. En outre, nous montrons par des simulations que les performances du système intelligent proposé sont améliorées significativement par l’utilisation de la solution d’apprentissage proposée permettant à l’utilisateur secondaire d’identifier plus efficacement les ressources fréquentielles les plus disponibles et de meilleure qualité. Cette thèse propose également un nouveau modèle d’apprentissage par renforcement combiné à un transfert de connaissance afin d’améliorer l’efficacité énergétique (EE) des réseaux cellulaires hétérogènes. Nous formulons et résolvons un problème de maximisation de l’EE pour le cas de stations de base (BS – Base Stations) dynamiquement éteintes et allumées (ON-OFF). Ce problème d’optimisation combinatoire peut aussi être modélisé par des bandits manchots « restless » markoviens. Par ailleurs, une gestion dynamique de la topologie des réseaux hétérogènes, utilisant l’algorithme RQoS-UCB, est proposée pour contrôler intelligemment le mode de fonctionnement ON-OFF des BS, dans un contexte de trafic et d’étude de capacité multi-cellulaires. Enfin une méthode incluant le transfert de connaissance « transfer RQoS-UCB » est proposée et validée par des simulations, pour pallier les pertes de récompense initiales et accélérer le processus d’apprentissage, grâce à la connaissance acquise à d’autres périodes temporelles correspondantes à la période courante (même heure de la journée la veille, ou même jour de la semaine par exemple). La solution proposée de gestion dynamique du mode ON-OFF des BS permet de diminuer le nombre de BS actives tout en garantissant une QoS adéquate en atténuant les fluctuations de la QoS lors des variations du trafic et en améliorant les conditions au démarrage de l’apprentissage. Ainsi, l’efficacité énergétique est grandement améliorée. Enfin des démonstrateurs en conditions radio réelles ont été développés pour valider les solutions d’apprentissage étudiées. Les algorithmes ont également été confrontés à des bases de données de mesures effectuées par un partenaire dans la gamme de fréquence HF, pour des liaisons transhorizon. Les résultats confirment la pertinence des solutions d’apprentissage proposées, aussi bien en termes d’optimisation de l’utilisation du spectre fréquentiel, qu’en termes d’efficacité énergétique. / Future cellular network technologies are targeted at delivering self-organizable and ultra-high capacity networks, while reducing their energy consumption. This thesis studies intelligent spectrum and topology management through cognitive radio techniques to improve the capacity density and Quality of Service (QoS) as well as to reduce the cooperation overhead and energy consumption. This thesis investigates how reinforcement learning can be used to improve the performance of a cognitive radio system. In this dissertation, we deal with the problem of opportunistic spectrum access in infrastructureless cognitive networks. We assume that there is no information exchange between users, and they have no knowledge of channel statistics and other user's actions. This particular problem is designed as multi-user restless Markov multi-armed bandit framework, in which multiple users collect a priori unknown reward by selecting a channel. The main contribution of the dissertation is to propose a learning policy for distributed users, that takes into account not only the availability criterion of a band but also a quality metric linked to the interference power from the neighboring cells experienced on the sensed band. We also prove that the policy, named distributed restless QoS-UCB (RQoS-UCB), achieves at most logarithmic order regret. Moreover, numerical studies show that the performance of the cognitive radio system can be significantly enhanced by utilizing proposed learning policies since the cognitive devices are able to identify the appropriate resources more efficiently. This dissertation also introduces a reinforcement learning and transfer learning frameworks to improve the energy efficiency (EE) of the heterogeneous cellular network. Specifically, we formulate and solve an energy efficiency maximization problem pertaining to dynamic base stations (BS) switching operation, which is identified as a combinatorial learning problem, with restless Markov multi-armed bandit framework. Furthermore, a dynamic topology management using the previously defined algorithm, RQoS-UCB, is introduced to intelligently control the working modes of BSs, based on traffic load and capacity in multiple cells. Moreover, to cope with initial reward loss and to speed up the learning process, a transfer RQoS-UCB policy, which benefits from the transferred knowledge observed in historical periods, is proposed and provably converges. Then, proposed dynamic BS switching operation is demonstrated to reduce the number of activated BSs while maintaining an adequate QoS. Extensive numerical simulations demonstrate that the transfer learning significantly reduces the QoS fluctuation during traffic variation, and it also contributes to a performance jump-start and presents significant EE improvement under various practical traffic load profiles. Finally, a proof-of-concept is developed to verify the performance of proposed learning policies on a real radio environment and real measurement database of HF band. Results show that proposed multi-armed bandit learning policies using dual criterion (e.g. availability and quality) optimization for opportunistic spectrum access is not only superior in terms of spectrum utilization but also energy efficient.

Identiferoai:union.ndltd.org:theses.fr/2017CSUP0002
Date17 May 2017
CreatorsModi, Navikkumar
ContributorsCentraleSupélec, Moy, Christophe
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds