Esta tese de doutorado trata de algoritmos de detecção cooperativa aplicados ao problema de sensoriamento espectral em sistemas de rádios cognitivos. O problema de detecção cooperativa é abordado sob dois paradigmas distintos: detecção centralizada e distribuída. No primeiro caso, considera-se que o sistema conta com um centro de fusão responsável pela tomada de decisão no processo de detecção. Já no segundo caso, considera-se que os rádios cognitivos da rede trocam informações entre si e as decisões são tomadas localmente. No que concerne ao sensoriamento espectral centralizado, são estudados os casos em que os rádios cognitivos enviam apenas um bit de decisão para o centro de fusão (decisão do tipo hard) e também o caso em que o detector envia a própria estatística de teste ao centro de fusão (decisão do tipo soft). No âmbito de sensoriamento espectral cooperativo com detecção distribuída, são tratados três cenários diferentes. No primeiro, considera-se o caso em que os rádios cognitivos têm conhecimento a priori do sinal enviado pelo usuário primário do sistema e do canal entre eles e o usuário primário. No segundo caso, há conhecimento apenas do sinal enviado pelo usuário primário. Já no terceiro, os rádios cognitivos não dispõem de qualquer informação a priori do sinal enviado pelo usuário primário. Além do problema de detecção distribuída, a tese também apresenta um capítulo dedicado ao problema de estimação, diretamente associado ao de detecção. Esse último problema é abordado utilizando algoritmos derivados da teoria clássica de filtragem adaptativa. / This doctorate thesis deals with cooperative detection algorithms applied to the spectral sensing problem. The cooperative detection problem is approached under two different paradigms: centralized and distributed detection. In the first case, is considered that a fusion center responsible for detection decision is presented in the system. On the other hand, in the second case, is considered that the cognitive radios in the network exchange information among them. Concerning the centralized spectrum sensing system, the case in which the cognitive radios send only one decision bit (hard decision) to the fusion center and the case in which the detector send the statistic test (soft decision) are considered. Regarding the spectrum sensing system with distributed detection, the work analysis three different scenarios. In the first one, where the cognitive radios explore an a priori knowledge of the primary user signal and the channel between the primary user and the cognitive radio. In the second one, the cognitive radios use an a priori knowledge of only the primary user signal. And, in the las scenario, there is no a priori knowledge about the primary user signal. Besides the distributed detection problem, the thesis also presents a chapter dedicated to the estimation problem, which is directed related to the detection problem. This last issue is approached using adaptive algorithms derived from the classic adaptive filtering theory.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29122014-183230 |
Date | 28 April 2014 |
Creators | Amanda Souza de Paula |
Contributors | Cristiano Magalhaes Panazio, Marcello Luiz Rodrigues de Campos, Charles Casimiro Cavalcante, Magno Teófilo Madeira da Silva |
Publisher | Universidade de São Paulo, Engenharia Elétrica, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds