Return to search

Providing Efficient and Secure Cooperative Spectrum Sensing for Multi-Channel Cognitive Radio Networks

The focus of this thesis is on cooperative spectrum sensing and related security issues in multi-channel cognitive radio networks (MCCRNs). We first study the channel assignment for cooperative spectrum sensing in MCCRNs to maximize the number of available channels. In centralized implementation, a heuristic scheme is proposed along with a greedy scheme to reduce the reported information from the cognitive radios (CRs). In distributed scenario, a novel scheme with multi-round operation is designed following the coalitional game theory. Next, we focus on the physical layer security issues for cooperative spectrum sensing in MCCRNs, caused by Byzantine attacks. New counterattacks are proposed to combat attacks comprising coalition head and CRs as Byzantine attackers, which target to reduce the number of available channels for sensing in distributed MCCRNs. First, a new secure coalition head selection is proposed, by using statistical properties of the exchanged SNRs in the coalitions. Then, an iterative algorithm is proposed to block out attackers, if they continue attacking the system. The important problem of key management is considered next, and an energy-efficient identity-based and a certificate-based distributed key management schemes are proposed. First, a new elliptic curve cryptography (ECC)-based distributed private key generation scheme is proposed to combat the single point of failure problem along with novel distributed private key generator (DPKG) selection schemes to preserve security and energy-efficiency. Because of its importance in the proposed identity-based key management scheme, we further propose a low-complexity DPKG assignment, based on multi-objective programming, which can capture DPKG fairness in addition to energy-efficiency. Finally, a more powerful and intelligent distributed cooperative Byzantine attack on the proposed multi-channel cooperative spectrum sensing is proposed, where attackers collude by applying coalitional game theory to maximize the number of invaded channels in a distributed manner. As a remedy, a hierarchical identity-based key management scheme is proposed, in which CRs can only play on a certain number of requested channels and channel access for sensing is limited to the honest CRs selected in the coalitional game. Simulation results show that the proposed schemes can significantly improve cooperative spectrum sensing and secure the system against Byzantine attacks.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/23228
Date January 2010
CreatorsKasiri Mashhad, Behzad
ContributorsCai, Jun (Electrical and Computer Engineering) Alfa, Attahiru S. (Electrical and Computer Engineering), Yahampath, Pradeepa (Electrical and Computer Engineering) Wang, Xikui (Statistics) Cheng, Yu (Illinois Institute of Technology)
PublisherWiley, IEEE, IEEE, IEEE, IEEE, IEEE
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageEnglish

Page generated in 0.0026 seconds