Return to search

Shades of Certainty : Annotation and Classification of Swedish Medical Records

Access to information is fundamental in health care. This thesis presents research on Swedish medical records with the overall goal of building intelligent information access tools that can aid health personnel, researchers and other professions in their daily work, and, ultimately, improve health care in general. The issue of ethics and identifiable information is addressed by creating an annotated gold standard corpus and porting an existing de-identification system to Swedish from English. The aim is to move towards making textual resources available to researchers without risking exposure of patients’ confidential information. Results for the rule-based system are not encouraging, but results for the gold standard are fairly high. Affirmed, uncertain and negated information needs to be distinguished when building accurate information extraction tools. Annotation models are created, with the aim of building automated systems. One model distinguishes certain and uncertain sentences, and is applied on medical records from several clinical departments. In a second model, two polarities and three levels of certainty are applied on diagnostic statements from an emergency department. Overall results are promising. Differences are seen depending on clinical practice, annotation task and level of domain expertise among the annotators. Using annotated resources for automatic classification is studied. Encouraging overall results using local context information are obtained. The fine-grained certainty levels are used for building classifiers for real-world e-health scenarios. This thesis contributes two annotation models of certainty and one of identifiable information, applied on Swedish medical records. A deeper understanding of the language use linked to conveying certainty levels is gained. Three annotated resources that can be used for further research have been created, and implications for automated systems are presented.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-74828
Date January 2012
CreatorsVelupillai, Sumithra
PublisherStockholms universitet, Institutionen för data- och systemvetenskap, Stockholm : Department of Computer and Systems Sciences, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationReport Series / Department of Computer & Systems Sciences, 1101-8526 ; 12-002

Page generated in 0.0138 seconds