Return to search

THE CONTROLS AND DRIVERS OF DISSOLVED ORGANIC CARBON QUANTITY AND DISSOLVED ORGANIC MATTER QUALITY IN AN IMPACTED GREAT LAKES WATERSHED

Intensely managed and modified catchments in the Great Lakes are linked to eutrophication and hypoxia of receiving water bodies downstream, resulting in water quality impairment, and adverse impacts on aquatic ecology. While much focus has been on the role of phosphorous and nitrogen, dissolved organic carbon (DOC) plays a complex and critical role in lake biogeochemical cycles, as it influences the interations between nutrients and contaminants in water and soil through processes of mobilization, transport, biological uptake, and deposition. Human-dominated landscapes have a range of consequences on DOC dynamics as catchment hydrology, plant cover, and nutrient inputs are altered in these environments. As such, the objectives of this study were to identify the controls and drivers of DOC quantity and DOM quality in the Spencer Creek watershed, which is the largest contributor of water to Cootes Paradise that ultimately drains into Lake Ontario. The 159 km2 study area of the catchment is complex, as the present landscape is composed of a mosaic of various land uses including agriculture, forest, wetland, urban, and industrial regions. Flow alterations contribute to the complexity of the watershed as there are managed reservoirs and alterations in water courses. From 2016- 2018, hydrometric data was collected across 9 monitoring sites, along with surface water samples that were analyzed for DOC concentration and optical properties. Results indicate differences in flow magnitudes and stream DOC between dry and wet conditions, where concentrations during wet conditions were significantly higher compared to dry. Additionally, there was substantial variation in DOC concentration and quality across the Spencer Creek watershed. DOC concentrations were found to be the lowest at groundwater influenced sites in the headwaters of the watershed, and the highest in the mid-catchment region where DOC quality was strongly influenced by wetland sources. The reservoir-influenced sites showed relatively intermediate concentrations of DOC, with quality that exhibited strong microbial signatures. At the outlet, DOC concentrations were attenuated and DOC quality was intermediate between allochthonous and autochthonous end members, reflecting upstream mixing processes. These processes were presented as a conceptual model of water and DOC movement through the Spencer Creek watershed. The implications of this research suggest that with anticipated wetter and warmer conditions DOC concentrations would increase in the watershed. The repercussions of increased DOC concentrations overall imply a decrease of terrestrial carbon storage, and greater input into more reactive and susceptible pools, which may result in further water quality degradation. Overall, the findings from this research provide insight into the fate and transport of water and DOC in a complex, managed catchment in the Great Lakes region, with the aims of providing key information for local stakeholders. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24898
Date January 2019
CreatorsSingh, Supriya
ContributorsCarey, Sean, Geography and Earth Sciences
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds