Return to search

Experimental Investigation and Development of Finite Element Model for Knife

abstract: Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2012

Identiferoai:union.ndltd.org:asu.edu/item:14573
Date January 2012
ContributorsVokshi, Erblina (Author), Rajan, Subramaniam (Advisor), Neithalath, Narayanan (Committee member), Mobasher, Barzin (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format119 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0027 seconds