La signature spectroscopique des ions moléculaires est fondamentale pour l'étude et la caractérisation de plasma en astrophysique et en laboratoire. Différentes techniques peuvent être utilisées pour caractériser ces plasmas parmi lesquelles la spectroscopie de photoélectrons induits par rayons X et la photo-absorption X. L'objectif de cette thèse est la simulation des spectres de photo-absorption au seuil L (2p) des ions moléculaires de silicium SiHn+ (n= 1, 2, 3) et au seuil K (1s) des ions moléculaires de l'oxygène OHn+ (n=1, 2) et du carbone CHn+ (n= 1, 2) produits lors d'une décharge plasma. Nous avons développé différents protocoles numériques permettant de calculer les spectres d'absorption aux seuils K et L en combinant des méthodes de structures électroniques et de propagation de paquet d'ondes. Les optimisations de géométrie et le calcul des seuils d'ionisation (IP) sont obtenus en utilisant la théorie de la fonctionnelle de la densité (DFT). Les effets de relaxation électronique due à la formation d'un trou en couche interne sont pris en compte au niveau SCF (convergence de la fonction d'onde électronique à N-1 électrons). Les surfaces d'énergie potentielle (PES) et les moments de transition dipolaires sont calculés à un niveau Post-HF (Interaction de configurations, CI). L'introduction explicite du couplage spin-orbite à l'aide de l'opérateur Breit-Pauli est utilisée pour l'étude du processus d'excitation au seuil L du silicium. Les spectres théoriques calculés pour les différentes molécules étudiées présentent un accord raisonnable avec les mesures expérimentales. La présence d'états électroniques métastables produits lors de la décharge plasma est discutée. / Molecular ions cover important roles in study and characterization of astrophysical and laboratory plasma. To this purposes, different spectroscopic techniques are used among which we found the X-ray photoelectron spectroscopy and the X-ray photoabsorption spectroscopy. This PhD work is focused on the calculation of X-ray photoabsorption spectra of molecular ions of silicon, carbon and oxygen XHn+ (X= Si, C, O; n= 1, 2, 3). The former is excited on the L (2p) shell while the others on the K (1s) shell produced in plasma discharged. We developed numerical protocols which permits to compute with reasonable precision the K and L-shell photoabsorption spectra combining electronic structure and nuclear wavepacket propagation methods. The optimization of the geometries and the calculation of the ionization potentials (IP) are carried out using the density functional theory (DFT). The relaxation effects due to the core hole creation are taken into account at the self-consistent field (SCF) level. The potential energy surfaces (PES) and the dipole moment transitions are computed at the post Hartree-Fock (configuration interaction, CI) level. The spin-orbit coupling effect are explicitly taken into account through the Breit-Pauli operator. The theoretical results have been compared with the experimental data and they allow the interpretation of the experimental bands.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066257 |
Date | 29 September 2017 |
Creators | Puglisi, Alessandra |
Contributors | Paris 6, Carniato, Stéphane, Sisourat, Nicolas |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds