The problem of spin manipulation via the spin-orbit interaction in nonmagnetic semiconductors in the absence of magnetic fields is investigated in this work. We begin with a review of the literature on spin dynamics in semiconductors, then discuss the semi-empirical k ⋅ p method of calculating direct-gap semiconductor properties, which we use to estimate material parameters significant for manipulation of spin even in the absence of a magnetic field. The total effective magnetic fields and precession lengths are calculated for a variety of quantum well orientations, and a class of devices are proposed that will allow for all-electric arbitrary manipulation of spin orientations.
The strain- and momentum-dependent spin splitting coefficient C3 has been calculated using a fourteen band Kane k⋅p model for a variety of III-V semiconductors as well as ZnSe and CdSe. It is observed that the spin-splitting parameters C3 and γ, corresponding to the strain-induced spin-orbit interaction and Dresselhaus coefficient, are sensitive to the value of the inter-band spin-orbit coupling Δ− between the p valence and p̄ second conduction band in all cases. The value of Δ− has therefore been recalculated in these materials using a tight-binding model and modern experimental values of the valence and second conduction band spin-orbit splittings.
The total effective magnetic field and precession length of spins in strained quantum wells in the (001), (110), and (111) planes are derived with consideration for all known effective magnetic fields except those due to interface effects in non- common-atom heterostructures (native inversion asymmetry). The orientation of the k-linear Dresselhaus field and the strain-dependent fields vary strongly with the growth axis of the quantum well. The precession length in the (110) and (001) cases can achieve infinite anisotropy, while the precession length of (111) quantum wells is always isotropic.
We find that the electronic spin rotation induced by drift transport around a closed path in a wide variety of nonmagnetic semiconductors at zero magnetic field depends solely on the physical path taken. Physical paths that produce any possible spin rotation due to transport around a closed path are constructed for electrons experiencing strain or electric fields in (001), (110), or (111)-grown zinc blende semiconductor quantum wells. Spin decoherence due to travel along the path is negligible compared to the background spin decoherence rate. The small size of the designed paths (< 100 nm scale in GaAs) may lead to applications in nanoscale spintronic circuits.
Identifer | oai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-3411 |
Date | 01 July 2012 |
Creators | Moehlmann, Benjamin James |
Contributors | Flatté, Michael E. |
Publisher | University of Iowa |
Source Sets | University of Iowa |
Language | English |
Detected Language | English |
Type | dissertation |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | Copyright 2012 Benjamin J. Moehlmann |
Page generated in 0.0024 seconds