La spintronique moléculaire et la photocatalyse sont deux domaines en constante évolution. Le premier s’attache à exploiter la possibilité de coupler deux phénomènes physiques, à savoir le transport d’un flux de porteurs de charges et le spin de l’électron, tandis que le second se concentre sur l’exaltation des propriétés chimiques de transfert d’électrons d’une espèce donnée grâce au phénomène physique d’irradiation lumineuse. Depuis quelques années, les nanotubes de carbone ont suscité un grand intérêt à la fois en tant que composant pour la spintronique moléculaire, en raison de leur grande cohérence de spin, et en tant que support idéal pour la catalyse moléculaire, grâce à leurs exceptionnelles propriétés électroniques de surface. Au cours de ce travail de thèse, nous nous sommes attachés à concevoir des complexes inorganiques possédant des propriétés physiques, (magnétiques ou optiques) et des propriétés chimiques (permettant leur assemblage non-covalent sur des nanotubes de carbone monoparoi) de manière à former des adduits complexes inorganiques-nanotubes aux propriétés exploitables en spintronique moléculaire et en photocatalyse. Les propriétés des complexes synthétisés ont été extensivement caractérisées (Chapitre 2), et les plus prometteurs de ces composés ont été assemblés avec succès sur les nanotubes de carbone (Chapitre 3), comme en attestent les mesures spectroscopiques réalisées. Enfin, les deux domaines d’applications concernés par nos travaux faisant intervenir des phénomènes de transport électronique, des études spécifiques sur des dispositifs électriques de type transistor à effet de champ dont le canal de conduction est constitué de nanotubes de carbone ont été réalisées (Chapitre 4). Celles-ci mettent à chaque fois en évidence l’existence d’une communication électronique entre les complexes inorganique et les nanotubes de carbone sur lesquels ils sont assemblés au sein des dispositifs. Bien qu’au final un couplage entre les propriétés magnétiques des complexes synthétisés et les propriétés de transport des nanotubes n’ait pas pu être mis en évidence, de nombreux phénomènes inattendus et extrêmement intéressants tels que des effets ambipolaires, des transferts de charge ou des ruptures de liaisons ont été observés. Par contre, un fort couplage opto-électronique a pu être obtenu entre un complexe et le flux de porteurs de charge des dispositifs, ce qui s’avère être de très bon augure pour des futures applications en photocatalyse. / Molecular spintronic and photocatalysis are two fields in constant evolution. While the first deals with the coupling of two physical properties, the flux of charge carriers and the spin of the electron, the second is focusing on the enhancement of the electron transfer of chemical species under light irradiation. Recently, there has been an increasing interest in carbon nanotubes as new components for molecular spintronics, since they possess high spin coherence, and as ideal materials for molecular catalysis, for their tremendous electronic surface properties. Our work consisted in conceiving inorganic complexes with both physical (magnetic or optic) and chemical (ability of realizing non covalent assembly on single-walled carbon nanotubes) properties, in order to create new nanotube-complex nanohybrids which could be exploited for molecular spintronics or photocatalysis applications. The properties of the synthesized complexes were extensively characterized (Chapter 2), and the most promising molecules were successfully assembled onto carbon nanotubes, as is proven by the spectroscopic measurement which were performed (Chapter 3). Finally, since both domains of applications we considered involve electronic transportation, specific studies were realized on field effect transistor devices with carbon nanotubes as the conduction channel (Chapter 4). They evidence strong electronic communications between the inorganic complexes and the carbon nanotubes onto which they are assembled in the devices. Even if in the end no coupling was observed between the magnetic properties of the inorganic complexes and the transport ones of the carbon nanotubes, numerous unexpected and very interesting phenomena such as ambipolar behavior, charge transfer effect or bond cleavage were evidenced. As for the optoelectronic coupling which was investigated for photocatalytic applications, a first step was made as the transport of the carbon nanotube field effect transistor devices onto which a complex was assembled shows a strong dependence with the applied light irradiation.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112108 |
Date | 13 July 2012 |
Creators | Magadur, Gurvan |
Contributors | Paris 11, Mallah, Talal |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0028 seconds