Return to search

Charakterisierung inaktivierender posttranslationaler Modifikationen des GC-A-Rezeptors für das atriale natriuretische Peptid (ANP) / Characterization of inactivating post-translational modifications of the GC-A receptor for the atrial natriuretic peptide (ANP)

Das atriale natriuretische Peptid (ANP) wird infolge einer Zunahme des atrialen Drucks aus den Myozyten des Atriums sezerniert. Es spielt lokal eine bedeutende, protektive Rolle und wirkt der Entstehung von Herzhypertrophie und Fibrose entgegen. Darüber hinaus kommt ANP vor allem eine wichtige Rolle als endokrines Hormon zu, das den arteriellen Blutdruck und das Blutvolumen regelt. Diese physiologischen Effekte vermittelt das Herzhormon durch seinen Rezeptor, das Transmembranprotein Guanylatzyklase A (GC-A). Durch Bindung von ANP an die extrazelluläre Domäne der GC-A wird intrazellulär, durch die katalytische Domäne des Rezeptors, der sekundäre Botenstoff cGMP gebildet. Patienten mit einer, durch Bluthochdruck verursachten Herzhypertrophie und Herzinsuffizienz weisen erhöhte ANP-Konzentrationen im Plasma auf. Die durch ANP vermittelten, protektiven Effekte sind allerdings vermindert. Zahlreiche Studien haben in vitro gezeigt, dass die chronische Inkubation der GC-A mit ihrem Liganden, sowie die Behandlung von GC-A exprimierenden Zellen mit Hormonen wie Angiotensin II, zur Desensitisierung des Rezeptors führen. Der Verlust der Funktionsfähigkeit geht einher mit der Dephosphorylierung des Rezeptors an spezifischen, intrazellulär lokalisierten Aminosäuren. Durch die Erforschung dieses Mechanismus und Identifizierung möglicher Interaktionspartner in vivo könnte der Grundstein für neue oder verbesserte Therapieformen gelegt werden.
Im ersten Teil der vorliegenden Arbeit wurde eine kürzlich identifizierte Isoform des GC-A-Rezeptors identifiziert, die durch alternatives Spleißen des Exons 4 entsteht und in einer Vielzahl untersuchter Gewebe der Maus vorkommt. Die Deletion umfasst 51 Basenpaare und resultiert in einem um 17 Aminosäuren verkürzten GC-A-Rezeptor (GC-AΔLys314-Gln330). Molekulare Modellierungen der extrazellulären Domänen des wildtypischen GC-A-Rezeptors und der Isoform zeigten, dass sich die Deletion im membrannahen Bereich der extrazellulären Domäne und damit deutlich entfernt von der ANP-Bindungsdomäne befindet. Oberflächenbiotinylierungs- und Zellfraktionierungsversuche zeigten, dass die Isoform des GC-A-Rezeptors an der Oberfläche von Zellmembranen transient transfizierter HEK 293-Zellen präsentiert wird. Jedoch zeigten die ANP-Stimulationsexperimente unter Anwendung von cGMP-Radioimmunassay (cGMP-RIA) und Förster-Resonanzenergietransfer (FRET)-Messungen, dass die Isoform nicht zur ANP-vermittelten intrazellulären cGMP-Bildung stimuliert werden kann. Im Rahmen von ANP-Bindungsstudien mit 125I-ANP wurde gezeigt, dass GC-AΔLys314-Gln330 die Fähigkeit zur Bindung des Liganden ANP verloren hat. Jedoch zeigten die Koimmunpräzipitationsversuche, dass die Isoform des GC-A-Rezeptors Heterodimere mit dem wildtypischen GC-A-Rezeptor bilden und dadurch die ligandeninduzierte Bildung von cGMP reduzieren kann. In vivo konnte gezeigt werden, dass unter Angiotensin II-induzierter Hypertonie die mRNA-Expression für GC-AΔLys314-Gln330 in der Lunge gesteigert, und gleichzeitig die ANP-vermittelte cGMP-Bildung deutlich reduziert ist. Daher kann davon ausgegangen werden, dass das alternative Spleißen ein regulierender Mechanismus ist, der auf den ANP/GC-A-Signalweg Einfluss nimmt. Angiotensin II-induziertes alternatives Spleißen des GC-A-Gens kann daher einen neuen Mechanismus für die Verringerung der Sensitivität des GC-A-Rezeptors gegenüber ANP darstellen.

Im zweiten Teil der vorliegenden Arbeit wurden transgene Tiere mit kardiomyozytenspezifischer Überexpression eines Epitop-getaggten GC-A-Rezeptors generiert. Durch dieses Modell sollte es ermöglicht werden, den Rezeptor aus murinem Gewebe anreichern und aufreinigen zu können um danach Analysen zu posttranslationalen Veränderungen und möglichen Interaktionspartnern durchzuführen. Zunächst wurde in eine FLAG-Epitop-getaggte GC-A zusätzlich ein HA-tag, sowie eine Erkennungssequenz für die Protease des tobacco etch virus (TEV) eingefügt. Die Expression und Funktionsfähigkeit des modifizierten Rezeptors wurde durch ANP-Stimulationsexperimente unter Anwendung von cGMP-RIA und FRET-Messungen verifiziert. Die Funktionsfähigkeit der TEV-Erkennungssequenz wurde durch die Elution mittels TEV-Protease nach Immunpräzipitation (IP) nachgewiesen. In vivo wurde an Mäusen die Expression und Lokalisation der GC-A auf Proteinebene, unter Anwendung von Zellfraktionierungsexperimenten und Immunpräzipitationen, überprüft. Die entstandenen transgenen Tiere zeigten eine deutliche, in den Zellmembranen von Kardiomyozyten lokalisierte, Überexpression des Rezeptors. Dieser konnte über das HA-tag angereichert und aufgereinigt werden. Um die Funktionsfähigkeit des modifizierten Rezeptors in vivo nachzuweisen, wurde in zwei Versuchsreihen kardiale Hypertrophie durch chronische Applikation von Angiotensin II induziert. Es wurde postuliert, dass die Überexpression funktionsfähiger GC-A im Herzen die Tiere vor Herzhypertrophie schützt. Die Ergebnisse der Studien zeigen allerdings, dass die generierten transgene Tiere trotz kardiomyozytenspezifischer Überexpression des Rezeptors nicht den erwarteten Schutz vor Herzhypertrophie aufwiesen, sondern ähnlich wie ihre wildtypischen Geschwistertiere reagieren. Jedoch gelang es mit Hilfe des Überexpressionsmodells zusammen mit anderen Mitarbeitern der AG Kuhn eine zuvor in vitro beschriebene Interaktion des GC-A-Rezeptors mit den Kationenkanälen TRPC3 und TRPC6 in vivo nachzuweisen. Somit besteht die Möglichkeit die Epitope und das murine Überexpressionsmodell auch zukünftig zu nutzen, um Interaktionspartner der GC-A zu identifizieren. / Atrial natriuretic peptide (ANP) is released from cardiac atrialand less ventricular myocytes in response to increased volume or pressure load. It has crucial local functions preventing pathological cardiac hypertrophy and fibrosis. Besides this ANP has a critical endocrine role in the maintenance of arterial blood pressure and blood volume. The physiological actions of this cardiac hormone are mediated through the transmembrane receptor guanylyl cyclase A (GC-A). Upon binding of ANP to the extracellular domain of the receptor the intracellular catalytic domain produces the second messenger cGMP. Patients with hypertensive cardiac hypertrophy and congestive heart failure show markedly increased levels of ANP but the protective, GC-A mediated effects are markedly blunted. Several in vitro studies have shown that chronic treatment of GC-A expressing cells with its ligand or growth hormones, i.e. Angiotensin II, lead to desensitization of the receptor by dephosphorylation of specific intracellular amino acids. Understanding the mechanisms of these posttranslational modifications and possible involved proteins in vivo may help to design new therapeutic approaches restoring GC-A activity in heart failure patients.
In the first part of this study a novel isoform of GC-A (GC-AΔLys314-Gln330) was characterized. This isoform was found ubiquitiously within the murine organism and is the result of differential splicing of exon 4. The resulting deletion of a 51-bp sequence is predicted to delete 17 amino acids in the membrane-distal part of the extracellular domain. Molecular modelling of the extracellular domain auf GC-A wt and the isoform suggested that the deletion does not directly alter the ligand binding domain of the receptor. Cell biotinylation assays and cell fractionation of transiently transfected HEK 293 cells showed, that the isoform is predominantly expressed and localized within the membrane of these cells. However functional studies in transfected HEK 293 cells using FRET and cGMP-RIA to measure intracellular cGMP formation demonstrated that ANP-induced cGMP formation was totally abolished for GC-AΔLys314-Gln330. Binding studies with 125I-ANP revealed that the isoform does not bind ANP. Co-immunoprecipitation experiments showed the ability of the isoform to form heterodimers with the wild type receptor, thereby inhibiting the ANP-induced intracellular cGMP formation. In vivo studies with Angiotensin II resulted in enhanced mRNA expression of GC-AΔLys314-Gln330 in the lungs of Angiotensin II treated mice. Notably the ANP-mediated formation of cGMP by isolated membranes of the lung was significantly reduced. Therefore it can be assumed that alternative splicing of GC-A might be a regulatory mechanism inhibiting the ANP/GC-A signaling pathway. Angiotensin II-induced alternative splicing of the GC-A gene may thus represent a novel mechanism for reducing the sensitivity of GC-A for it‘s ligand.

In the second part of this study transgenic mice with a cardiomyocyte specific overexpression of an epitope tagged GC-A were generated to enable enrichment and purification of the receptor from the heart for biochemical analyses. First a FLAG-tagged GC-A receptor was modified by inserting an additional HA-tag and a restriction site for the protease of tobacco etch virus (TEV). The expression and function of the modified receptor was verified using whole cell stimulation and FRET to determine cGMP formation and IP experiments to test the elution with the protease of TEV. The expression levels and localization of GC-A in cardiomyocytes were analyzed using cell fractionation and immunoprecipitation experiments which showed a clear overexpression within the membranes of cardiomyocytes. It was possible to enrich and purify the GC-A from isolated cardiomyocytes using the HA-tag. Two cardiac hypertrophy studies using chronic administration of Angiotensin II were performed to verify the overexpression of a functional GC-A receptor. Based on the literature it was postulated that transgenic mice are potentially protected from hypertension induced cardiac hypertrophy. Despite verified overexpression of GC-A within the cardiomyocytes of transgenic animals no differences, compared to their littermates, could be found for the relevant hypertrophy parameters. However by using the mice with overexpression of the HA-tagged GC-A we could verify an interaction of GC-A with the cation channels TRPC3 and TRPC6 in vivo. Therefore this model might be a useful tool to identify more interaction partners and posttranslational modifications of the GC-A receptor.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:9795
Date January 2014
CreatorsHartmann, Michael
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightshttps://opus.bibliothek.uni-wuerzburg.de/doku/lic_mit_pod.php, info:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds