Shallow groundwater flow in the critical zone of steep headwater mountain catchments is often assumed to mimic surface topography. However, groundwater flow is influenced by other variables, such as the elevation of the water table and subsurface hydraulic conductivity, which can result in temporal variations in both magnitude and direction of flow. In this study, I investigated the temporal variability of groundwater flow in the soil zone (solum) within the critical zone of a headwater catchment at the Hubbard Brook Experimental Forest in North Woodstock, NH. Groundwater levels were continuously monitored throughout several seasons (March 2019 to Jan 2020) in a network of wells comprising three hillslope transects within the upper hillslopes of the catchment. Five clusters of three wells per cluster were screened from 0.18 – 1.1 m depth at the base of the solum. Water levels were also monitored in five deeper wells, screened from 2.4 - 6.9 m depth within glacial sediments of the C horizon. I conducted 47 slug tests across the well network to determine hydraulic properties of the aquifer materials surrounding each well. In addition, our team conducted a large-scale auger investigation mapping soil horizon depths and thicknesses.
Results show that the magnitude of hydraulic gradients and subsurface hydrologic fluxes varied at each site with respect to changing water-table elevation, having a maximum range of 0.12 m/m and 9.19 x 10-6 m/s, respectively. The direction of groundwater flow had an arithmetic mean deviating from surface topography by 2-10 degrees, and a total range that deviated from surface topography by as much as 51 degrees. During lower water table regimes, groundwater flow direction deviated from the ground surface, but under higher water table regimes, in response to recharge events, flow direction mimicked surface topography. Within most of the well clusters, there is an observable connection between the slope direction of the top of the C horizon and the direction of groundwater flow during lower water table regimes. Slug test results show the interquartile range of saturated hydraulic conductivity (Ksat) within the C horizon (1.5×10-7 to 9.8×10-7 m/s) is two orders of magnitude lower than the interquartile range of Ksat values within the solum (2.9×10-5 to 5.2×10-5 m/s). Thus, the C horizon is on average a confining unit relative to the solum that may constrict groundwater flow below the solum. Additionally, results from the larger scale auger investigation suggest that deviations in subsurface topography of the C horizon may be generalizable at the larger hillslope scale. Overall, these results indicate that 1) shallow groundwater flow direction and magnitude within this headwater catchment are dynamic and can deviate from surface topography, and 2) the subsurface topography of the C horizon can influence groundwater flow direction. These results imply that temporal dynamics of groundwater flow direction and magnitude should be considered when characterizing subsurface flow in critical zone studies. Additionally, knowledge of subsurface topography of confining units may provide constraints on the temporal variability of groundwater flow direction. / M.S. / Streams that originate at higher elevations (defined as headwater streams) are important drinking water sources and deliver water and nutrients to maintain freshwater ecosystems. Groundwater is a major source of water to these streams, but little is known about how groundwater flows in these areas. Scientists delineate watersheds (areas of land that drain water to the same point) using surface topography. This approach works well for surface water, but not as well for groundwater, as groundwater may not flow in the same direction as surface water. Thus, assuming that the ground-watershed is the same as the surface watershed can lead to errors in hydrologic studies.
To obtain more accurate information about groundwater flow in headwater areas, I continuously measured groundwater levels in forest soils at the Hubbard Brook Experimental Forest in North Woodstock, NH. My main objective was to determine if there is variability in the direction and amount of groundwater flow. I also measured the characteristics of the soils to identify the thicknesses of soil units and the permeability of those units. I used these data to evaluate the relationship between groundwater flow direction, surface topography, and the permeability of soil units.
Overall, I found that groundwater flow direction can differ significantly from surface topography, and groundwater flow direction was influenced by the groundwater levels. When groundwater levels were high (closer to the land surface), groundwater flow was generally in the same direction as surface topography. However, when groundwater levels were lower, flow direction typically followed the slope of the lowest permeability soil unit. These results suggest that scientists should not assume that groundwater flow follows the land surface topography and should directly measure groundwater levels to determine flow direction. In addition, results from this study show that characterizing soil permeability can help scientists make more accurate measurements of groundwater flow.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104222 |
Date | 12 May 2020 |
Creators | Benton, Joshua Robert |
Contributors | Geosciences, Schreiber, Madeline E., McGuire, Kevin J., Bailey, Scott W., Pollyea, Ryan M. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | en_US |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0024 seconds