Return to search

Word Clustering in an Interactive Text Analysis Tool / Klustring av ord i ett interaktivt textanalysverktyg

A central operation of users of the text analysis tool Gavagai Explorer is to look through a list of words and arrange them in groups. This thesis explores the use of word clustering to automatically arrange the words in groups intended to help users. A new word clustering algorithm is introduced, which attempts to produce word clusters tailored to be small enough for a user to quickly grasp the common theme of the words. The proposed algorithm computes similarities among words using word embeddings, and clusters them using hierarchical graph clustering. Multiple variants of the algorithm are evaluated in an unsupervised manner by analysing the clusters they produce when applied to 110 data sets previously analysed by users of Gavagai Explorer. A supervised evaluation is performed to compare clusters to the groups of words previously created by users of Gavagai Explorer. Results show that it was possible to choose a set of hyperparameters deemed to perform well across most data sets in the unsupervised evaluation. These hyperparameters also performed among the best on the supervised evaluation. It was concluded that the choice of word embedding and graph clustering algorithm had little impact on the behaviour of the algorithm. Rather, limiting the maximum size of clusters and filtering out similarities between words had a much larger impact on behaviour.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-157497
Date January 2019
CreatorsGränsbo, Gustav
PublisherLinköpings universitet, Interaktiva och kognitiva system
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds