Return to search

Prise en compte des aspects polydispensés pour la modélisation d'un jet de carburant dans les moteurs à combustion interne

Le contexte général de cette thèse est la simulation numérique de l'injection de carburant dans un moteur à combustion interne, afin d'améliorer son rendement et de limiter la production de polluants. De manière plus générale, ce travail s'applique à tout système industriel mettant en jeu un écoulement multiphasique constitué d'un carburant liquide injecté dans une chambre occupée initialement par du gaz, comme par exemple les moteurs automobiles ou aéronautiques, ou les turbomachines. Intrinsèquement, il est possible de simuler l'ensemble de l'écoulement avec les équations classiques de la dynamique des fluides sans avoir recours à des outils de modélisation supplémentaires liés au caractère diphasique. Mais, les tailles des structures générées pendant l'injection (gouttes de diamètre inférieur à 10 μm) conduisent à des temps de calculs prohibitifs pour une application industrielle. C'est pourquoi il est nécessaire d'introduire une modélisation diphasique. C'est dans ce contexte que deux régions sont formellement distinguées: le coeur liquide dense proche de l'injecteur, appelé écoulement à phases séparées, et le spray constitué d'une population de gouttes polydisperse (c'est-à-dire de tailles différentes) générées après le processus d'atomisation en aval de l'injecteur. Ce travail de thèse étudie les modèles Eulériens pour la description de spray évaporants et polydisperses, en vue d'applications industrielles. Ils représentent une alternative potentielle aux modèles Lagrangiens qui sont majoritairement utilisés en industrie mais présentant des inconvénients majeurs. Ainsi, le modèle multi-fluide est étudié dans un premier temps. Bien que prometteur, deux difficultés sont soulignées: le coût requis pour une description précise de la polydispersion, et son incapacité à décrire les croisements de gouttes (particle trajectory crossing, PTC, en anglais). La thèse propose des solutions à ces deux limitations. Ces solutions reposent chacune sur des méthodes de moments. Premièrement, le modèle appelé Eulerian Size Multi Size Moment (EMSM) permet de résoudre des sprays évaporants et polydisperses de manière bien plus efficace que le modèle multi-fluide. Des outils mathématiques sont utilisés pour fermer le système d'équations associé au modèle, et combinés à des schémas de types volumes finis appelés schémas cinétiques, afin de préserver la réalisabilité du vecteur de moments, pour le transport et l'évaporation. Une réponse à la seconde limitation est apportée avec le modèle appelé Eulerian Multi Velocity Moment (EMVM) basé sur le transport de moments en vitesse d'ordre élevé. Une distribution bimodale peut être localement reconstruite à partir des moments en utilisant une méthode de quadrature de moments (Quadrature Method of Moment, QMOM en anglais) en une ou plusieurs dimensions d'espace. De la même manière que précédemment, l'utilisation de schémas cinétiques permet de préserver la réalisabilité du vecteur de moment. De plus, une étude mathématique approfondie de la dynamique du système en une dimension d'espace en révèle toute la complexité et représente une étape indispensable en vue de l'élaboration de schémas de transport d'ordre élevé (supérieur ou égal à 2).Afin de les tester, ces deux modèles ainsi que les outils numériques associés sont implémentés dans MUSES3D, un code académique de simulation numérique directe (Direct Numerical Simulation DNS en anglais) dédié à l'évaluation des modèles de spray. Des résultats de grande qualité démontrent le potentiel des modèles. L'extension du modèle EMSM dans un contexte industriel est ensuite considérée, avec son implémentation dans IFP-C3D, un code résolvant des écoulements réactifs sur des maillages non structurés et mobiles (dû au mouvement du piston) dans un formalisme RANS (Reynolds Averaged Navier Stokes) en présence de sprays. Le formalisme ALE (Arbitrary Lagrangian Eulerian en anglais) est utilisé et le modèle EMSM réécrit dans ce formalisme afin de mener des calculs en maillage mobile. De plus, une étude numérique a permis d'étendre les propriétés de précision et de stabilité obtenues en maillage fixe. La robustesse du modèle EMSM est alors démontrée avec succès dans IFP-C3D sur un cas impliquant un mouvement de piston, ainsi que dans le cadre d'une comparaison avec le code MUSES3D. Enfin, des résultats très encourageants prouvent la faisabilité d'un calcul d'injection dans une chambre de combustion d'un spray polydisperse avec le modèle EMSM.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00628908
Date20 December 2010
CreatorsKah, Damien
PublisherEcole Centrale Paris
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds