An investigation into using attention mechanisms for better feature extraction in wildfire spread prediction models. This research examines the U-net architecture to achieve image segmentation, a process that partitions images by classifying pixels into one of two classes. The deep learning models explored in this research integrate modern deep learning architectures, and techniques used to optimize them. The models are trained on 12 distinct observational variables derived from the Google Earth Engine catalog. Evaluation is conducted with accuracy, Dice coefficient score, ROC-AUC, and F1-score. This research concludes that when augmenting U-net with attention mechanisms, the attention component improves feature suppression and recognition, improving overall performance. Furthermore, employing ensemble modeling reduces bias and variation, leading to more consistent and accurate predictions. When inferencing on wildfire propagation at 30-minute intervals, the architecture presented in this research achieved a ROC-AUC score of 86.2% and an accuracy of 82.1%.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-4178 |
Date | 01 December 2022 |
Creators | Shah, Kamen Haresh, Shah, Kamen Haresh |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0017 seconds