Return to search

Multiple treatment objectives of solar driven electrolytic oxidant production for decentralized water treatment in developing regions and its economic feasibility

Im Jahr 2017 konsumierten knapp 2 Milliarden Menschen fäkalkontaminiertes Wasser. Das führte zu fast 500.000 Todesfällen. Gleichzeitig werden Trinkwasserressourcen ausgebeutet und schon heute sind 4 Milliarden Menschen von Wasserknappheit betroffen. In ländlichen Entwicklungsregionen stellt, aus technischer Sicht, die Desinfektion des Wassers eine der größten Herausforderungen für die Sicherstellung einer angemessenen Trinkwasserversorgung dar.
In dieser Dissertation wird die technische sowie wirtschaftliche Machbarkeit einer solar betriebenen Anlage zur Chlorproduktion mittels Inlineelektrolyse (ECl2) als Alternative zur Lieferung und Dosierung von Chlorreagenzien analysiert und bewertet. Während der ECl2 wird das gesamte aufzubereitende Wasser durch eine Elektrolysezelle geleitet und das Chlor aus dem natürlichen Chloridgehalt des Wassers „inline“ gebildet. Unter opti-malen Betriebsbedingungen kann Trinkwasser aber auch aufbereitetes Abwasser ohne Zugabe durch Chemikalien desinfiziert werden. Damit würde die Lieferung von Chlorlösung dauerhaft entfallen. Zusätzlich wurde bewertet, inwiefern die Entfernung von Eisen und Arsen durch die ECl2 sowie der Abbau von organischen Spurenstoffen durch zusätzliche Kombination mit UV-Bestrahlung zur Radikalbildung verbessert werden kann. Alle vorgestellten Feldtests wurden in Langzeitstudien unter Realbedingungen in zukünftigen Anwendungsgebieten durchgeführt. Dadurch konnten mögliche Probleme im Be-trieb der Anlagen frühzeitig erkannt und Lösungsvorschläge erarbeitet werden. Die Erfahrungen aus dem Betrieb der ECl2-Systeme stellen dabei den größten Nutzen dieser Arbeit dar.
Mit den Feldversuchen konnte gezeigt werden, dass Wasser durch die Anwendung von ECl2 sicher desinfiziert und gleichzeitig ausreichend vor Wiederverkeimung geschützt werden kann. Insbesondere die Kombination mit naturnahen Verfahren zur Vorbehandlung des zu desinfizierenden Wassers hat sich als sehr vorteilhaft für die langfristig sichere Anwendung des Verfahrens herausgestellt. Für den in Uttarakhand, Indien, durch-geführten Feldtest konnte die ECl2 zusammen mit der Uferfiltration eine Logstufenreduktion von > 5.0 für Gesamtcoliforme und 3.5 für E. coli erreichen.
Durch die Kombination mit einer vertikal durchströmten Pflanzenkläranlage (VFCW) konnte die Desinfektion von behandeltem Abwasser mittels Chlor erheblich vereinfacht werden. Die Pflanzenkläranlage reduzierte die Ammoniumkonzentration, den CSB sowie die Trübung und damit auch die Chlorzehrung des Wassers. Darüber hinaus wurden durch die VFCW Konzentrationsschwankungen im Zulauf erheblich vergleichmäßigt. Es wurden Logstufenreduktionen für Gesamtcoliforme von 5.1 und >4.0 für E. coli erzielt. Durch diese Verfahrenskombination werden auch Anwendungen zur Wiederverwendung von Abwasser möglich, die über die Bewässerung hinausgehen und damit wertvolle Frischwasserressourcen geschont.
Durch die Behandlung von arsenkontaminiertem Grundwasser konnten mit der hier vor-geschlagenen Kombination von ECl2 und anschließender gemeinsamer Ausfällung und Filtration Entfernungsraten für Arsen von 94 % und Eisen von > 99 % erreicht werden. Da der WHO-Grenzwert für Arsen (10 µg/L) im hier durchgeführten Feldversuch mit 10 ± 4 µg/L dauerhaft nicht sicher eingehalten werden konnte, wurden weitere Optimierungsschritte identifiziert.
Die Entfernungsrate für Benzotriazol von 5 % durch ECl2 allein konnte in Kombination mit UV-Lampen auf 89 % erhöht werden. Ähnliche Ergebnisse wurden für andere aus-gewählte organische Spurenstoffe erzielt. Es sind jedoch weitere Studien erforderlich, um den Abbauprozess im Detail zu verstehen und eine mögliche Zunahme der Toxizität durch die Bildung von Transformationsprodukten sowie Desinfektionsnebenprodukten zu bewerten.
Die Feldversuche haben gezeigt, dass ECl2 als innovative Behandlungstechnologie in der Lage ist, Trinkwasser und behandeltes Abwasser sicher zu desinfizieren. Darüber kann mittels ECl2 u.a. die Entfernung von Arsen aus verunreinigten Rohwässern als auch der Abbau von Spurenstoffen verbessert werden.
Bei härterem Rohwasser steht die rasche Verkalkung der Kathoden jedoch einem wartungsarmen Betrieb der Anlagen, trotz Polumkehr, entgegen. Die Versuche haben ge-zeigt, dass ECl2-Systeme mit den hier verwendeten Elektrolysezellen, nur in Wässern mit einem Gesamthärtewert <200 mg/L CaCO3 zuverlässig arbeiten. Da Rohwässer häufig Konzentrationen >200 mg/L aufweisen, ist der Anwendungsbereich der ECl2 begrenzt und erfordert alternative Chlorierungstechnologien zur ursprünglich geplanten Inline-Elektrolyse.
Bereits während Versuchen zur Abwasserdesinfektion in Spanien wurde daher das Pilotsystem technisch dahingehend angepasst, dass nur noch ein Teilstrom von 4 bis 23 % des zu behandelten Wasservolumens durch die Elektrode floss. Dadurch konnte die Bildung von Ablagerungen vollständig verhindert und ein zuverlässiger, nahezu wartungsfreier Betrieb sichergestellt werden. Je nach dem Chlorbedarf und der natürlichen Chloridkonzentration des Wassers erfordert diese Betriebsweise in der Regel jedoch die Zugabe von Chlorid. In Anbetracht der hier ermittelten erhöhten Prozessstabilität und dem erheblich reduzierten Energieverbrauch erscheint diese Zugabe vertretbar. Laborstudien haben auch gezeigt, dass die Bildung anorganischer Desinfektionsnebenprodukte bei den „onsite chlorine generation“ (OCG) Systemen kein Problem darstellt.
Um die wirtschaftliche Machbarkeit der hier getesteten Trinkwasseraufbereitungssysteme unter Realbedingungen zu bewerten, wurden der Betrieb eines in Ägypten eingesetzten ECl2-Aufbereitungssystems und zweier in Tansania und Nepal eingesetzter OCG-Einheiten analysiert. Die Studie zeigt, dass die Betriebs- und Wartungskosten solcher Einheiten dauerhaft gedeckt werden können. Für den Aufbau der Infrastruktur sind jedoch Investitionen durch entsprechende Förderprogramme erforderlich.
Die hier angewandten Verfahren zur Wasseraufbereitung können eine wichtige Rolle bei der Verbesserung der Trinkwasserversorgung insbesondere in ländlichen Entwicklungsregionen und der Wiederverwendung von aufbereiteten Abwässern spielen. / In 2017 nearly 2 billion people consumed water that was contaminated with feces, causing almost 500.000 diarrheal deaths. At the same time freshwater resources are depleted and water scarcity is already affecting 4 billion people worldwide. From a technical perspective the continuous supply of chemicals needed to ensure sufficient disinfection remains a major challenge in rural water treatment, and existing technical solutions to adequately disinfect water have failed in the past.
This dissertation work evaluates the technical and economic feasibility of solar-driven inline electrolytic production of chlorine (ECl2), as an alternative to external chlorine supply. During ECl2 disinfection the water passes through the cell and chlorine is produced “inline” from the natural chloride content of the water. Under optimal conditions, no chemicals are required to safely disinfect drinking water and treated wastewater. Fur-thermore, the ability of ECl2 to enhance the removal of iron and arsenic from contaminated groundwater and to degrade Trace Organic Compounds (TOrC) when combined with UV were analyzed. All relevant tests have been conducted in long-term field studies in future deployment areas. This enabled the evaluation of potential operational challenges of such systems under real-world conditions. The experiences gathered from these field trials represent the major benefit of this dissertation work.
The trials have shown that with ECl2 water can be safely disinfected and supplied with an adequate amount of residual disinfectant. Here, the combination with natural pre-treatment systems has proven to be beneficial. For the drinking water trial conducted in Uttarakhand, India, the ECl2 system received bank filtrate and achieved overall log re-moval rates of >5.0 for total coliforms and >3.5 for E. coli.
For the disinfection of treated wastewater, the combination with a vertical flow constructed wetland (VFCW) has largely simplified the disinfection with chlorine by equalizing wastewater (WW) inlet quality fluctuations, removing ammonium, COD, and turbidity. This has also substantially reduced the chlorine demand of the water, and pathogen indicator-free conditions were achieved with log unit removals of 5.1 and ≥ 4.0 for total coliforms and E. coli, respectively. Wastewater reuse applications that go beyond irrigation become permissible through this approach and the use of limited freshwater resources can be substituted.
Removal rates for arsenic and iron of 94 % and >99 % respectively were able to be achieved by treating contaminated groundwater with the combination of ECl2 and subsequent co-precipitation and filtration proposed here. Despite effluent concentrations up to 10 ± 4 µg/L for arsenic, strict WHO guideline values could not be met. Here further optimization requirements were identified.
The removal rate for benzotriazole of 5% through ECl2 alone could be increased to 89 % when combined with UV lamps. Similar results were achieved for other selected TOrCs. Still, more advanced studies are required to understand the degradation process in detail, and to evaluate a potential increase in toxicity through the formation of transformation products.
The field trials have shown that ECl2 as an innovative treatment technology is capable of safely disinfecting drinking water and treated wastewater. Its application also enhances the treatment of other contaminants evaluated. However, cathode scaling has been iden-tified as the most critical technical issue - despite the use of polarity inversion. ECl2 systems could only operate reliably in waters with total hardness value < 200 mg/L CaCO3. As such concentrations are rare, the fields of application of ECl2 are limited. This required other chlorination technologies as alternatives to the originally planned inline electrolysis.
An initial derivative of an ECl2 system was also applied during a wastewater disinfection trial in Spain. In this setting the portion of water passing by the electrodes and therefore the quantities of scaling agents were reduced to between 4 and 23 % of the total water volume treated. With this approach, deposit formation was completely prevented and reliable, nearly maintenance-free operation was ensured. However, such onsite chlorine generation (OCG) units commonly require the addition of chloride. From the author’s perspective and the experience collected during the field trials, the addition of NaCl is justifiable considering the increased reliability of system operation. OCG offers further advantages regarding process stability and energy demand. Lab studies have also shown that the formation of inorganic disinfection byproducts has not been an issue with OCG systems.
To evaluate the economic feasibility of the drinking water treatment systems tested in real-world scenarios, an ECl2 treatment system operating in Egypt and two OCG units operating in Tanzania and Nepal were analyzed. The study shows that long-term operation and maintenance costs of such units can be covered. However, seed investment is required for the construction of the initial infrastructure. Once those costs are covered, the treatment approaches presented here can sustainably play an important role in reducing the number of people consuming contaminated water, especially in rural developing regions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:78541
Date21 March 2022
CreatorsOtter, Philipp
ContributorsLiedl, Rudolf, Grischek, Thomas, Wintgens, Thomas, Technische Universität Dresden, Hochschule für Technik und Wirtschaft Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.1016/j.scitotenv.2020.137595, 10.3390/ijerph14101167, 10.3390/w11010122, 10.3390/w12113275, 10.1016/j.watres.2020.116384, info:eu-repo/grantAgreement/Europäische Kommission/FP7/308502//Safeguarding Water resources in INdia with Green and Sustainable technologies/SWINGS, info:eu-repo/grantAgreement/Europäische Kommission/H2020/689242//Innovative Eco-Technologies for Resource Recovery from Wastewater/INCOVER, info:eu-repo/grantAgreement/Europäische Kommission/H2020/689450//Demonstrating synergies in combined natural and engineered processes for water treatment systems/AquaNES, info:eu-repo/grantAgreement/Bundesministerium für Bildung und Forschung/KMU-innovativ/02WQ1333A/B//Langfristig sichere Trinkwasserversorgung in arsenkontaminierten Gebieten durch solarbetriebene Arsenentfernung und Onlineüberwachung/SolArEx

Page generated in 0.0042 seconds