Return to search

Investigation of Room Temperature Sputtering and Laser Annealing of Chalcogen Rich TMDs for Opto-Electronics

Chalcogen-rich transition-metal dichalcogenide (TMD) magnetron sputtering targets were custom manufactured via ball milling and sintering in the interest of depositing p-type chalcogen-rich films. Room temperature radio frequency (RF) magnetron sputtering produced ultra-thin amorphous precursor of WSx and MoSx (where x is between 2-3) on several different substrates. The influence of working pressure on the MoS3 content of the amorphous films was explored with X-ray photoelectron spectroscopy (XPS), while the physical and chemical effects of sputtering were investigated for the WSx target itself. The amorphous precursor films with higher chalcogenide content were chosen for laser annealing, and their subsequent laser annealing induced phase transformations were investigated for the synthesis of polycrystalline 2H-phase semiconducting thin films. The role of laser fluence and the number of laser pulses during annealing on phase transformation and film mobility was determined from Raman spectroscopy and Hall effect measurement, respectively. Hall effect measurements were used to identify carrier type and track mobility between amorphous precursors and crystalline films. The p-type 2H-TMD films demonstrates the ability to produce a scalable processing criterion for quality ultra-thin TMD films on various substrates and in a method which is also compatible for flexible, stretchable, transparent, and bendable substrates.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1987054
Date08 1900
CreatorsGellerup, Branden Spencer
ContributorsVoevodin, Andrey, Shepherd, Nigel, Muratore, Christopher
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Gellerup, Branden Spencer, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.002 seconds