Return to search

XPS study of RF-sputtered copper in silicon dioxide. / 透過X光電子譜研究射頻濺射之銅復合物石英 / XPS study of RF-sputtered copper in silicon dioxide. / Tou guo X guang dian zi pu yan jiu she pin jian she zhi tong fu he wu shi ying

by Leung Kit Sum = 透過X光電子譜研究射頻濺射之銅復合物石英 / 梁潔心. / Thesis submitted in: August 2002. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 77-78). / Text in English; abstracts in English and Chinese. / by Leung Kit Sum = Tou guo X guang dian zi pu yan jiu she pin jian she zhi tong fu he wu shi ying / Liang Jiexin. / Abstract --- p.i / 論文摘要 --- p.iii / Acknowledgement --- p.iv / Table of Content --- p.v / List of Figures --- p.ix / List of Tables --- p.xi / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Nanoparticles and Nanophase Materials --- p.1 / Chapter 1.2 --- Nonlinear Optical Phenomena and Their Physical Origin --- p.4 / Chapter 1.2.1 --- Dielectric Confinement --- p.6 / Chapter 1.2.2 --- Quantum Confinement --- p.8 / Chapter 1.2.2.1 --- Intraband Transition --- p.9 / Chapter 1.2.2.2 --- Interband Transition --- p.9 / Chapter 1.2.2.3 --- Hot-electron Transition --- p.11 / Chapter 1.3 --- Importance of Optical Nonlinearity --- p.11 / Chapter 1.3.1 --- Self-Phase Modulation --- p.11 / Chapter 1.3.2 --- Self-Focusing/Defocusing --- p.12 / Chapter 1.4 --- Sample Preparation --- p.12 / Chapter 1.4.1 --- Sputtering --- p.13 / Chapter 1.5 --- Characterization of Nanocomposites --- p.15 / Chapter 1.6 --- Aim of the Project --- p.15 / References --- p.17 / Chapter CHAPTER 2 --- INSTRUMENTATION / Chapter 2.1 --- Introduction --- p.20 / Chapter 2.2 --- Sputter Deposition --- p.20 / Chapter 2.2.1 --- Glow Discharge --- p.21 / Chapter 2.2.2 --- Radio-Frequency Sputtering (RF Sputtering) --- p.24 / Chapter 2.2.3 --- Magnetically Enhanced Sputtering --- p.24 / Chapter 2.2.4 --- Instrumentation --- p.25 / Chapter 2.2.4.1 --- Target Assemblies --- p.27 / Chapter 2.2.4.2 --- Shutter --- p.28 / Chapter 2.2.4.3 --- Substrate Holder --- p.28 / Chapter 2.2.4.4 --- Power Supply --- p.28 / Chapter 2.2.5 --- Experimental --- p.29 / Chapter 2.3 --- X-ray Photoelectron Spectroscopy (XPS) --- p.29 / Chapter 2.3.1 --- Instrumentation --- p.31 / Chapter 2.3.2 --- Application to metal nanoclusters composite glass --- p.33 / Chapter 2.3.2.1 --- Compositional Analysis --- p.33 / Chapter 2.3.2.2 --- Depth Profiling --- p.33 / Chapter 2.3.3.3 --- Auger Parameters --- p.33 / Chapter 2.4 --- Transmission Electron Microscopy (TEM) --- p.34 / Chapter 2.4.1 --- Sample Preparation --- p.35 / Chapter 2.4.1.1 --- Sample Thickness Determination --- p.35 / Chapter 2.4.1.2 --- Ion Milling --- p.36 / Chapter 2.4.2 --- Instrumentation --- p.36 / Chapter 2.4.3 --- Contrast and Image Formation --- p.38 / Chapter 2.4.3.1 --- Bright and Dark Field Image --- p.38 / Chapter 2.4.3.2 --- Mass and Thickness Contrast --- p.40 / Chapter 2.4.3.3 --- Diffraction Contrast --- p.40 / References --- p.42 / Chapter CHAPTER 3 --- COMPOSITION AND NANUSTRUCTURE OF COPPER DOPED FUSED SILICA / Chapter 3.1 --- Introduction --- p.44 / Chapter 3.2 --- Experiment --- p.45 / Chapter 3.3 --- Results and Discussion --- p.47 / Chapter 3.3.1 --- Effect of Input RF Power on the Growth of Film --- p.47 / Chapter 3.3.2 --- Theoretical Calculation of Cluster Size by Ratio of Surface to Total Amount of Copper --- p.55 / Chapter 3.3.3 --- TEM Studies of Copper Nanoclusters --- p.57 / Chapter 3.3.4 --- Further Discussion: Effect of Current and Voltage on the Determination of Deposition Rate --- p.60 / Chapter 3.3.5 --- Atomic Distribution and Chemical State of Copper Nanocluster --- p.60 / Chapter 3.3.6 --- Effect of Pressure on the Growth of Film --- p.66 / Chapter 3.3.6.1 --- How Pressure Affects Cluster Growth --- p.70 / Chapter 3.3.7 --- Effect of Deposition time on the Growth of Film --- p.71 / Chapter 3.3.7.1 --- How Film thickness Affects Cluster Growth --- p.75 / Chapter 3.4 --- Summary --- p.75 / References --- p.77 / Chapter Chapter 4 --- CONCLUSION AND FUTURE DIRECTIONS / Chapter 4.1 --- Conclusion --- p.79 / Chapter 4.2 --- Future Directions --- p.79 / Chapter 4.2.1 --- Generation of Active Matrix Nanocomposite --- p.79

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324470
Date January 2003
ContributorsLeung, Kit Sum., Chinese University of Hong Kong Graduate School. Division of Chemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 80 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.1007 seconds