Having origins in the increasingly popular Matrix Theory, the square root function of a matrix has received notable attention in recent years. In this thesis, we discuss some of the more common matrix functions and their general properties, but we specifically explore the square root function of a matrix and the most efficient method (Schur decomposition) of computing it. Calculating the square root of a 2×2 matrix by the Cayley-Hamilton Theorem is highlighted, along with square roots of positive semidefinite matrices and general square roots using the Jordan Canonical Form.
Identifer | oai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:math_theses-1023 |
Date | 24 April 2007 |
Creators | Gordon, Crystal Monterz |
Publisher | Digital Archive @ GSU |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Mathematics Theses |
Page generated in 0.002 seconds