Maternal diabetes mellitus negatively affects embryonic development and increases the risk for congenital malformations. Besides direct teratogenicity, diabetic intrauterine milieu can predispose an individual to chronic diseases later in life, including cardiovascular diseases, obesity, and diabetes mellitus, in a process termed fetal programing. Molecular mechanisms of embryonic and fetal responses to maternal diabetes are still not fully elucidated. Using mouse model, we show that maternal diabetes induces gene expression changes in the hearts of developing embryos. The most significant changes in the expression of 11 selected genes were detected at the developmental stage associated with completion of cardiac septation, myocardial mass expansion, and increased insulin production in the embryonic pancreas. These affected genes encode products involved in the epithelial-to-mesenchymal transition, a crucial process in heart development. Using immunohistochemistry, we detected increased hypoxia in the diabetes-exposed hearts at the critical stage of cardiac development. Correspondingly to increased hypoxia, the expression of hypoxia-inducible factor 1α (HIF1α) and vascular endothelial growth factor A was increased in the heart of diabetes-exposed embryos. Based on our results indicating the...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:396360 |
Date | January 2019 |
Creators | Čerychová, Radka |
Contributors | Pavlínková, Gabriela, Nováková, Olga, Neckář, Jan |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0015 seconds