Return to search

An LTCC Based Compact SIW Antenna Array Feed Network for a Passive Imaging Radiometer

Passive millimeter-wave (PMMW) imaging is a technique that allows the detection of inherent millimeter-wave radiation emitted by bodies. Since different bodies with varying properties emit unequal power intensities, a contrast can be established to detect their presence. The advantage of this imaging scheme over other techniques, such as optical and infrared imaging, is its ability to operate under all weather conditions. This is because the relatively long wavelengths of millimeter-waves, as compared to visible light, penetrate through clouds, fog, and sandstorms. The core of a PMMW camera is an antenna, which receives the electromagnetic radiation from a scene. Because PMMW systems require high gains to operate, large antenna arrays are typically employed. This mandatory increase of antenna elements is associated with a large feeding network. Therefore, PMMW cameras usually have a big profile.
In this work, two enabling technologies, namely, Substrate integrated Waveguide (SIW) and Low Temperature Co-fired Ceramic (LTCC), are coupled with an innovative design to miniaturize the passive front-end. The two technologies synergize very well with the shielded characteristics of SIW and the high density multilayer integration of LTCC. The proposed design involves a novel multilayer power divider, which is incorporated in a folded feed network structure by moving between layers. The end result is an efficient feeding network, which footprint is least affected by an increase in array size. This is because the addition of more elements is accommodated by a vertical expansion rather than a lateral one.
To characterize the feed network, an antenna array has been designed and integrated through efficient transitions.The complete structure has been simulated and fabricated. The results demonstrate an excellent performance, manifesting in a gain of 20 dBi and a bandwidth of more than 11.4% at 35 GHz. These values satisfy the general requirements of a PMMW system.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/268852
Date05 February 2013
CreatorsAbuzaid, Hattan
ContributorsShamim, Atif, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Bagci, Hakan, Foulds, Ian G., Shamim, Atif
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rights2013-02-05, At the time of archiving, the student author of this thesis opted to temporarily restrict access to it. The full text of this thesis became available to the public after the expiration of the embargo on 2013-02-05.

Page generated in 0.0015 seconds