Return to search

Optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique / Two approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitution

Deux approches ont été considérées pour l’optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 : la modification de surface (coating) et la substitution partielle. Dans un premier temps, nous avons montré que la substitution anionique du fluor à l’oxygène n’était pas effective contrairement aux hypothèses proposées dans la littérature par certains auteurs, mais qu’en réalité une couche de LiF était formée à la surface de ces matériaux, quelle que soit la voie de synthèse utilisée. Ces matériaux "coatés" présentent néanmoins une cyclabilité améliorée en batterie au lithium. Leurs propriétés structurales et physico-chimiques ont été caractérisées en combinant notamment la diffraction des rayons X, la spectroscopie RMN MAS du 7Li et du 19F et la spectroscopie d’électrons Auger. Dans un second temps, nous avons étudié l’effet de la substitution de l’aluminium (électrochimiquement inerte) au cobalt au sein de ces matériaux lamellaires riches en nickel et en manganèse. Les conditions de synthèse ont été optimisées et un matériau intéressant a ainsi été proposé. La structure, et plus particulièrement la distribution cationique, ont été déterminées par des analyses chimiques, par diffraction des rayons X et par des mesures magnétiques : la substitution de l’aluminium au cobalt entraîne une surlithiation moindre, un taux d’échange Li+ / Ni2+ plus important et par conséquent une diminution du caractère bidimensionnel de la structure. Ces matériaux présentent une bonne cyclabilité même à des régimes élevés et une stabilité thermique améliorée à l’état désintercalé. / Two approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitution. First, we showed that fluorine substitution for oxygen is not effective, on the contrary to the hypotheses proposed in literature by others authors: in fact a thin LiF layer is formed at the surface of these materials irrespective of the synthesis route. These "coated" materials show a better cyclability. Their structural and physicochemical properties were characterized mainly by X-ray diffraction, 7Li and 19F MAS NMR spectroscopy and Auger electron spectroscopy. Secondly, we studied the effect of aluminum (electrochemically inert) substitution for cobalt within these layered materials rich in nickel and manganese. The synthesis conditions were optimized and an interesting material was thus proposed. The structure and cationic distribution were determined by chemical analyses, X-ray diffraction, magnetic measurements: aluminum substitution leads to a lower overlithiation, to a larger exchange Li+ / Ni2+ ratio and thus to a decreasing bidimensional character for the structure. These materials show a good cyclability even at high rates and an improved thermal stability in the deintercalated state.

Identiferoai:union.ndltd.org:theses.fr/2009BOR13771
Date13 February 2009
CreatorsBains, Jessica Johanna
ContributorsBordeaux 1, Delmas, Claude-Henri, Croguennec, Laurence
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds