Lors d'un accident grave dans un réacteur à neutrons rapides refroidi au sodium, le combustible fondu peut entrer en contact avec le sodium environnant, conduisant alors à une interaction communément appelée Interaction Combustible-Réfrigérant. L'objectif de ce travail est d'améliorer la connaissance relative aux transferts thermiques en régime d'ébullition en film du sodium, essentielle pour étudier les risques liés à une éventuelle explosion de vapeur. Peu d'études, tant expérimentales que théoriques, ont été menées sur l'ébullition en film du sodium. Une unique expérience permet d'étudier l'ébullition en film du sodium en convection naturelle. Lors de l'analyse de ces essais, deux sous-régimes d'ébullition en film, non identifiés par l'auteur mais déjà observés pour l'eau, ont été mis en évidence : un régime de film qualifié de stable, sans contact liquide-solide, et un régime de film qualifié d'instable, avec contacts. D'un point de vue théorique, un seul modèle dédié à l'ébullition en film du sodium est proposé dans la littérature, dont l'analyse a révélé de nombreux défauts. Dans un premier temps, une analyse d'échelles du problème a été effectuée en convection naturelle et en convection forcée, en distinguant les cas d'un fort et d'un faible sous-refroidissement. Cette approche simplifiée, cohérente avec les résultats expérimentaux, a permis de définir les nombres adimensionnels pertinents pour l'établissement de corrélations. Un modèle a ensuite été développé pour traiter l'ébullition en film du sodium autour d'une sphère dans le cas le plus général - en convection naturelle ou forcée, pour un métal liquide saturé ou sous-refroidi. Ce modèle est basé sur l'approximation de double couche limite et met en œuvre une méthode intégrale en considérant les termes inertiels et convectifs, classiquement négligés, dans les équations de bilan de l'écoulement de vapeur. Par ailleurs, le rayonnement est pris en compte de manière couplée à l'interface liquide-vapeur et contribue directement à la production de vapeur. Ce modèle permet d'évaluer correctement le flux de chaleur perdu par un corps chaud en comparaison aux résultats des essais, en particulier lorsque ceux-ci sont corrigés des biais expérimentaux. La partition du flux de chaleur, entre chauffage et vaporisation, est également estimée : il s'agit d'une information indispensable à la description d'une explosion de vapeur et non accessible expérimentalement. En outre, l'influence de différents paramètres - sous-refroidissement du sodium, surchauffe et diamètre de la sphère, vitesse de l'écoulement externe, pression du système - dans les conditions pouvant être celles d'un accident grave a été étudiée. Enfin, un modèle simplifié a été utilisé pour étudier la transition entre les deux sous-régimes d'ébullition en film identifiés dans l'expérience. Les tendances obtenues par cette approche sont analogues à celles observées expérimentalement. / During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of different parameters - sodium subcooling, sphere superheat and diameter, external flow velocity, system pressure - under accident conditions has been studied. Eventually, a simplified model has been used to investigate the transition between the two film boiling regimes identified in the experiment. The trends obtained with this approach are similar to those observed experimentally.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENI064 |
Date | 29 November 2013 |
Creators | Le Belguet, Alix |
Contributors | Grenoble, Berthoud, Georges |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds