Return to search

Carbon Cycling in Tropical Rivers: A Carbon Isotope Reconnaissance Study of the Langat and Kelantan Basins

Despite the importance of tropical rivers to the global carbon cycle, the nature of carbon cycling within these watersheds has been dealt with by only a handful of studies. The current work attempts to address this lack of information, using stable isotope and concentration measurements to constrain sources and sinks of carbon in two Peninsular Malaysian watersheds. The basins are located on the central-western and northeastern coasts of the Malaysian Peninsula, and are drained by the Langat and Kelantan Rivers, respectively. Water samples were collected from three points along the two rivers twice a month, in addition to the sampling of groundwater in adjacent aquifers.
Principal component analyses (PCA) on water chemistry parameters in the Langat and Kelantan Rivers show the dominance of geogenic and anthropogenic influences, grouped in 4 to 6 components that comprise over 50 % of the total dataset variances. The geogenic input is reflected by components showing strong loadings by Ca, Mg, Mn, Si, and Sr, while anthropogenic influences via pollution are indicated via strong loadings by NO3, SO4, K, Zn and Cl. The carbon isotope and concentration data appear unrelated to these groups, suggesting that the riverine carbon cycle in both locations is dominated by other factors. These may include alternative sources of organic pollution, or inputs from the local vegetation and soils.
The mean riverine 13CDOC of -27.8 ± 2.9 ‰ and -26.6 ± 2.2 ‰ in the Langat and Kelantan Basins, respectively, are consistent with the dominance of C3-type vegetation in both watersheds. Riverine 13CDIC signatures approach C3-like values at high DIC concentrations, with measurements as low as -19 ‰ in the Kelantan Basin and -20 ‰ observed in the Langat Basin, consistent with a biological origin for riverine DIC. However, the average 13CDIC in river water is 13C-enriched by about 10 ‰ relative to the expected C3 source in both rivers, and this 13C- enrichment appears to be largest with smaller DIC concentrations.
Because of the overpressures of CO2 in the rivers, entrainment of isotopically-heavy atmospheric CO2 is not a likely explanation for the observed 13C-enrichment. Theoretically, dissolution of carbonates could be an alternative source of 13C-enriched carbon, but this lithology is scarce, particularly in the Langat watershed. The increase in DIC downstream and generally high pCO2 values in most river sections argues against aquatic photosynthesis as a primary causative factor for the observed isotopic enrichment. This elimination process leaves the speciation of riverine DIC and the evasion of CO2 as the most likely mechanisms for 13C-enrichment in DIC, via isotope fractionation during HCO3- hydration and CO2 diffusion. Potentially, methanogenic activity could also be, at least partially, responsible for the 13C-enrichment in DIC, particularly immediately downstream of the Langat Reservoir, but due to the absence of empirical data, this must remain only a theoretical proposition.
The aquatic chemistry and dissolved carbon data suggests that pollution discharge into the Langat and Kelantan Rivers is the major factor that is responsible for the considerable CO2 overpressures and high DIC and DOC concentrations in the river waters, particularly in the downstream sections. This pollution is likely of biological origin, via sewage and palm oil mill effluent (POME) discharge, and therefore isotopically indistinguishable from natural C3 plant sources.
Carbon budgets of the Langat and Kelantan River show CO2 degassing to be a significant mechanism of fluvial carbon loss, comprising roughly 50 %, or more, of the total riverine carbon export in both watersheds. The remainder of the river carbon is transported to the ocean in the form of DIC, DOC and POC in broadly comparable proportions. However, the combined riverine carbon export from the Kelantan and Langat Basins amount to 2 % or less of the total carbon sequestration of the watersheds. Thus, most of the sequestered carbon is returned to the atmosphere via respiration, with smaller amounts incorporated into ecosystem biomass .
These results highlight the complexity of carbon cycling in tropical rivers, and agree with previous studies in showing riverine systems to be more than simple conduits of carbon from the land to the ocean.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/30429
Date14 January 2014
CreatorsLee, Kern Y.
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0014 seconds